Module No. 4: Energy Conservation and Management No. of weeks / credits 7

Week 1

• Energy Management and Audit

- Definition & Objectives of Energy Management
- Types and Methodology of Energy Audit
- Reporting Format of Energy Audit
- Understanding Energy Costs
- Benchmarking and Energy Performance
- Matching Energy Usage to Requirement
- o Maximising System Efficiency
- Fuel and Energy Substitution
- Energy Audit Instruments

Week 2

- Energy Action Planning
 - \circ Introduction
 - o Energy Management System

• Financial Management

- \circ Introduction
- o Investment Need
- o Appraisal and Criteria
- o Financial Analysis
- Financial Analysis Techniques
- Sensitivity and Risk Analysis
- o Financing Options

Week 3

• Project Management

- \circ Introduction
- o Steps in Project Management

• Energy Monitoring & Targeting

- o **Definition**
- o Elements of Monitoring & Targeting System
- Rationale for Monitoring
- Targeting and Reporting
- o Data and Information Analysis
- o Relating Energy Consumption and Production
- o CUSUM
- Case Study

Week 4

- Fuels and Combustion
 - o Introduction to Fuels
 - Properties of Fuels Solid, Liquid & Gaseous Fuels
 - Properties of Agro Residues
 - \circ $\,$ Combustion of Oil, Coal and Gas $\,$
 - o Draft System
 - Combustion Controls

• Boilers

- \circ Introduction
- Boiler Systems
- o Types and Classifications
- o Performance Evaluation
- o Boiler Blow-down
- o Boiler Water Treatment
- o Energy Conservation Opportunities
- $\circ \quad \text{Case Study} \\$

• Steam System

- \circ Introduction
- Properties of Steam
- o Steam Distribution
- Steam Pipe Sizing and Design
- Proper Selection
- o Operation and Maintenance of Steam Traps
- o Performance Assessment Methods for Steam Traps
- Energy Saving Opportunities
- Furnaces
 - \circ $\;$ Types and Classification
 - o Performance Evaluation
 - o Fuel Economy Measures
 - o Case Study

Week 5

- Insulation and Refractories
 - $\circ \quad \text{Purpose of Insulation}$
 - Types and application
 - Calculation of Insulation Thickness

- Economic Thickness of Insulation (ETI)
- o Formula for Heat Loss Calculation
- Refractories Properties & Classification
- o Typical Refractories in Industrial Use
- Selection of Refractories
- Heat Losses from Furnace Walls

• FBC Boilers

- \circ Introduction
- O Mechanism of Fluidised Bed Combustion
- Types of FBC Boilers
- Retrofitting FBC in Conventional Boilers
- Advantages of FBC Boilers

• Cogeneration

- \circ Need for Cogeneration
- Principle of Cogeneration
- o Technical Options for Cogeneration
- Classification of Cogeneration Systems
- o Factors Influencing Cogeneration Systems
- Important Technical Parameters
- Prime Movers for Cogeneration
- Typical Cogeneration Performance Parameters
- Relative Merits of Cogeneration Systems
- o Case Study

• Waste Heat Recovery

- $\circ \quad \text{Introduction}$
- Classification and Application
- Benefits of Waste Heat Recovery
- Development of a Waste Heat Recovery System
- o Commercial Waste Heat Recovery Devices

Week 6

- Electrical System
 - Introduction to Electric Power Supply Systems
 - o Electricity Billing
 - o Electrical Load Management and Maximum Demand Control
 - o Power Factor Improvement and Benefits
 - o Transformers

- System Distribution Losses
- Harmonics
- Analysis of Electrical Power Systems

• Electric Motors

- $\circ \quad \text{Introduction}$
- o Motor Types
- Motor Characteristics
- Motor Efficiency
- o Motor Selection
- Energy-Efficient Motors
- Factors Affecting Energy Efficiency & Minimising Motor Losses
- Rewinding Effects on Energy Efficiency
- Speed Control of AC Induction Motors
- Methodology of Motor Load Survey

Compressed Air System

- \circ Introduction
- Compressor Types
- Compressor Performance
- o Compressed Air System Components
- o Efficient Operation of Compressed Air Systems
- o Compressor Capacity Assessment
- Checklist for Energy Efficiency in Compressed Air System

• HVAC and refrigeration system

- \circ Introduction
- Types of Refrigeration System
- o Common Refrigerants and Properties
- o Compressor Types and Application
- o Selection of a Suitable Refrigeration System
- o Performance Assessment of Refrigeration Plants
- Factors Affecting Performance & Energy Efficiency
- Energy Saving Opportunities

Week 7

- Fans and Blowers
 - \circ Introduction
 - o Fan Types
 - o Fan Performance

- o Evaluation and Efficient System Operation
- o Fan Design and Selection Criteria
- Flow Control Strategies
- Fan Performance Assessment
- Energy Saving Opportunities

• Pumps and Pumping System

- Pump Types
- System Characteristics
- O Pump Curves
- Factors Affecting Pump Performance
- Flow Control Strategies
- Energy Conservation Opportunities in Pumping Systems

Cooling Tower

- o Types and Performance Evaluation
- o Efficient System Operation
- Flow control strategies
- Energy Saving Opportunities
- Assessment of cooling towers

• Lighting System

- o Light source
- Choice of lighting
- Luminance requirements
- o Energy Conservation Avenues

• Energy Efficient Technologies in Electrical Systems

- o Maximum Demand Controllers
- o Automatic Power Factor Controllers
- Energy Efficient Motors
- o Soft Starter
- Variable Speed Drives
- Energy Efficient Transformers
- o Electronic Ballast
- o Energy Efficient Lighting Controls