6.5.1	Internal Quality Assurance Cell (IQAC) has contributed significantly for institutionalizing the quality assurance strategies and processes, by constantly reviewing the teaching-learning process,					
O.M	structures & methodologies of operations and learning outcomes, at periodic intervals					
Quu	Describe two practices institutionalized as a result of IQAC initiatives within a maximum of 500					
	words					
	File Description					
	Provide the link for additional information					
	Upload any additional information					

TEXT

IQAC has taken several initiatives on quality assurance strategies and processes. Here we focus on two interventions.

A. In its meeting on 21 August 2019 (<u>Link</u> to Minutes) a decision was taken to ensure Programme Specific Outcome and Course Outcome for all programmes and courses respectively. Homepage of all the 26 Programmes include PSOs now. The list is below.

Program Name	Programme URL
M Sc (Environmental Science and Resource Management)	Link
M Sc (Climate Science & Policy)	Link
M Sc (Geoinformatics)	Link
M Sc (Economics)	Link
M Sc (Biotechnology)	Link
M Sc (Water Science & Governance)	Link
MBA (Infrastructure Management)	Link
MBA (Sustainability Management)	Link
MA (Public Policy & Sustainable Development)	Link
MA (Sustainable Development Practice)	Link
M.Tech (Renewable Energy Engineering & Management)	Link
M.Tech (Urban Development & Management)	Link
M.Tech (Water Resource Engineering & Management)	Link
LLM	Link
Ph.D in Natural Resource Management	<u>Link</u>
Ph.D in Energy & Environment	<u>Link</u>
Ph.D in Business Sustainability	<u>Link</u>
Ph.D in Bioresources & Biotechnology	Link
Ph.D in Water Science & Governance	<u>Link</u>
Ph.D in Policy Studies	<u>Link</u>
Ph.D in Legal Studies	<u>Link</u>
PG diploma (Public Policy & Sustainable Development)	<u>Link</u>
PG Diploma (Water Science & Governance)	Link
PG diploma in Renewable Energy	Link
Advanced PG diploma in Renewable Energy	Link
Certificate (Water Science & Governance)	Link

Similarly all course outlines include Course Outcome/Learning Outcome and connect them with different assessments. It has become mandatory to include these in every course presented before the AC or even the BoS. In short, it has become a part of academic culture at TERI SAS. Annexure 6.5.1.A includes a typical programme outline and set of courses with complete course outlines.

B. In its meeting on 18th February 2019 (Link to Minutes) two recommendations were made

(a) For cases of Review/Revision of Programmes a Report be made a part of Academic Council Agenda/ Minutes.

(b) Such reports may include feedback from a variety of stakeholders.

Subsequent programme revisions include such a Report. Annexure 6.5.1.B. includes one such Report connected with revision of MSc Economics programme. Typically BoS Minutes includes the stakeholder feedback on review of courses and ATR. One example is included in the Minutes of BoS of Department of Policy Studies held on 10 May 2019 (link to Minutes) concerned review of several courses in the M.Sc. Economics programme.

10, INSTITUTIONAL AREA, VASANT KUNJ, NEW DELHI

SUB: 49th MEETING OF THE ACADEMIC COUNCIL

Enclosures

Date: 17 July 2021Venue: Online - Microsoft Team PlatformTime: 10.30 AM

Item No. Particulars

Enclosure 1 Elst of experts for beleenon committee	Enclosure 1	List of experts	for Selection	Committee
--	-------------	-----------------	---------------	-----------

Enclosure 2 Anomaly in the course credits and teaching weeks

Enclosure 3(a) Criteria for continuation of registration to subsequent semester

Enclosure 3(b)Conversion of CGPA grades into percentage

- Enclosure 4 Copy of UGC notification for extension and the list of doctoral scholars
- Enclosure 5 New course outlines
- Enclosure 6 Guidelines and course outlines of project/thesis/internships
- Enclosure 7 Outlines of Ph.D programmes
- Enclosure 8 New programme structure of the M.Sc. (Biotechnology) Programme offered by Department of Biotechnology
- Enclosure 9 Change in the structure of the M.Sc. (Economics) Programme offered by Department of Policy Studies

Enclosure 8

New programme structure of the M.Sc. (Biotechnology) Programme offered by Department of Biotechnology

Department of Biotechnology TERI School of Advanced Studies New Delhi

MASTER OF SCIENCE (M.Sc.) BIOTECHNOLOGY PROGRAMME

Available specialisations Specialisation 1: Plant Biotechnology Specialisation 2: Microbial Biotechnology

Definitions

'Programme' means an entire course of study designed to be taught and evaluated in a teaching Department/Centre or jointly under more than one such Department/ Centre

'Course' means a segment of a subject that is part of a Programme

'Programme Structure' means a list of courses (Core, Elective, Specialisation specific electives) that makes up a Programme, specifying the syllabus, credits, hours of teaching, evaluation and examination criteria, minimum number of credits required for successful completion of the programme etc., prepared in conformity to University Rules

'Core Course' means a course that a student admitted to a particular programme must successfully complete to receive the degree and which cannot be substituted by any other course

'Elective Course' means an optional course to be selected by a student out of such courses offered in the same or any other Department/Centre

'Specialisation specific elective' means a course to be selected by a student for as specialization

About the Programme

From July 2021, a Programme in M.Sc. in Biotechnology will be offered by the Department of Biotechnology, TERI SAS. The restructured programme, M.Sc. Biotechnology, aims to meet the growing requirement of qualified scholars supporting R&D in Research, Academia and Industries related to Biotechnology. The programme aims towards contributing to the objectives of several National Missions such as National Mission for Sustainable Agriculture, National Mission for Sustaining the Himalayan Ecosystem and National Water Mission and toward meeting the Sustainable Developmental Goals such as zero hunger, good health and well-being and quality education among several others. This programme, with a significantly broadened scope, compared to earlier M.Sc. Plant Biotechnology Programme will provide options to specialize either in Plant Biotechnology or Microbial Biotechnology. A multidisciplinary outlook will be inculcated in the students by encouraging students to take up courses from Social Sciences, Environment and Engineering streams of the University. Further, the restructured programme is futuristic in scope and in alignment with Choice Based Credit System (CBCS) mandated in UGC-NAAC guidelines and NEP 2020 framework.

Programme Overview

The M.Sc. Biotechnology Programme offers conceptual understanding by imparting cuttingedge disciplines of science along with an exposure to regulatory issues, IPRs and ethical concerns related to biotechnology. Emphasis is laid on training in applied mathematics, statistics, and computational skills in view of the projected demand for a trained cadre adept at approaching biological problems in truly interdisciplinary and integrative manner. Courses have been specifically structured to impart concepts pertaining to advanced areas of research in genomics and contemporary approaches employed by molecular biologists. Therefore, a graduate of this Programme can be expected to have both specialized knowledge and practical experience required to address contemporary problems in both academic and industrial settings.

Programme Objectives

The objective of the programme is to highlight the role played by biotechnology in modern society and its relevance to sustainable development. The M.Sc. programme in Biotechnology seeks to provide education and training, empower students with technical skill-set, create capacities and build career opportunities in three key domains of biotechnology namely:

- (i) Research and development in industry and academia
- (ii) Science education
- (iii) Policy, regulations and management

This is achieved through a combination of interdisciplinary curricula comprised of both theory as well as intensive laboratory work. Through its unique pedagogical methods, the academic programme allows transferability of acquired skills in domains unrelated to biotech sectors.

Programme Outcomes (POs)

A research-oriented learning that develops analytical and integrative problem-
solving approaches.
Specialized knowledge and practical training to address contemporary
problems in academia and industry.
Awareness of ethical issues and regulatory considerations while addressing
societal needs for sustainability.
To advance education and research in biotechnology and explore sustainable
solutions for agriculture, environment and energy sectors.
Promote an understanding of interdisciplinary approaches and technologies
used in the analysis of complex biological information.
Impart rigorous hands-on training in both laboratory-based methods and bio-
informatics tools for biological research.
Sensitize students about multifaceted regulatory issues and ethical concerns
related to biotechnology.

Programme Specific Outcome (PSOs)

PSO1	Molecular biology tools and experimental strategies, theoretical understanding						
	of OMICS approaches.						
PSO2	DNA profiling and barcoding techniques, generation of transgenics, marker						
	assisted breeding and selection, testing of hybrid purity.						
PSO3	Computational skills such as modelling, simulation analysis of data.						
PSO4	Structural and functional characterization of biological macromolecules.						
PSO5	IPRs, ethics and regulations in the field of biotechnology						
PSO6	Theoretical and applied knowledge and practical skills in Plant biotechnology						
	for a better food, nutrition and environment for the mankind.						
PSO7	Microbial diversity, Molecular pathogenesis, host-microbe interactions,						

		bioprocess engineering and environmental biotechnology.
Progr	amme	USPs

- Research-led teaching
- Two full days of practical classes every week with hands-on-training
- Exposure to real-world problems during Major Project
- Options for specialization
- Additional focus on Intellectual Property Rights and Bioethics

Eligibility Criteria

A Bachelor's degree in Sciences/Engineering/Technology

Selection Procedure

Applications are invited from candidates through advertisements published on TERI SAS website (<u>www.terisas.ac.in</u>) and also in leading national newspapers and social media platforms. Admission to the M.Sc. Biotechnology Programme is made on the basis of a combined entrance examination followed by an interview conducted by a faculty panel from the Department of Biotechnology, TERI SAS.

Pedagogical Tools

The classroom/online lectures are complemented with extensive laboratory practical, case studies, classroom discussions, and guest lectures by experts. During the fourth semester, students are involved in full-time research for their major project.

Programme Structure

- The M.Sc. Biotechnology programme is a two-year programme divided into four semesters. A student is required to complete 75 credits for the completion of the programme and the award of degree.
- The M.Sc. Biotechnology programme provides options for specialization by completing a set of specialisation specific courses. Currently, two specialisations are being offered under the Programme: i) Plant Biotechnology and ii) Microbial Biotechnology.
- The entire M.Sc. Biotechnology Programme is comprised of core courses (51 credits), elective courses (audit only but equivalent to minimum 4 credits), Specialisation specific courses (8 credits) and a Major Project (16 credits). In addition, two courses, i) Technical Writing and Communication Skills and ii) Applied mathematics have been added as compulsory audit courses.
- The specialisation specific courses will be offered during second and third semesters. A student can opt for specialisation specific courses related to only one of the available specialisations.
- The elective courses are to be taken only as **audit course** only and the grades in those courses will not be considered while calculating the CGPA. A minimum 4 credits equivalent of elective courses need to be completed during the Programme. There is no upper limit for the number and credit equivalent for Elective courses. The Elective

courses may be taken in any semester when offered by the concerned Department and provided it doesn't conflict with any other course taken by the student.

- At the start of Semester 2, the students will be required to choose any one of the two specialisations. Maximum of 60% of the total number of students can be allotted a particular specialisation. Allotment of specialisation will be done based on a combination of merit (as per the Semester 1 grades) and preference.
- A strong component of Bioinformatics in the form of hands-on practical equivalent to 3 credits has been included in Semesters 2 and 3. This is in addition to the theoretical orientation on Bioinformatics of 2 credits that will be provided in Semester 1.

Programme o	utline*
--------------------	---------

Year	Courses	Credits	Duration
First Year			
1st Semester	7 core courses of 2-7 credits each, and 2 core audit courses	21	15 weeks
2nd Semester	7 core courses of 2-7 credits and 1 course of 2 credits in the area of specialisation**	22	15 weeks
Second Year			
3rd Semester	4 core courses of 2-7 credits and 1 course of 2 credits in the area of specialisation**	16	15 weeks
4th Semester	Major project	16	15 weeks

*In addition to above, a minimum 4 credits equivalent of elective courses (audit only) listed below need to be completed during the Programme which may be taken in any semester when offered by the concerned Department and provided it doesn't conflict with any other course taken by the student. There is no upper limit for the number and credit equivalent for Elective courses.

**Specialisation specific practical component equivalent to 2 credits will carried out under Biotechnology Laboratory- Part 2 (2nd Semester) and Biotechnology Laboratory- Part 3 (3rd Semester) each

Semester 1						
Course No.	Course title	Туре	Number of Credits	No. of L-T-P	Course Coordinator	Course Offered
BBP 101	Biotechnology Laboratory - Part 1	Core	7	7-0-182	Dr. Udit Soni	Yes
NRE 101	Communication Skills and Technical Writing	Audit	2*	16-12-0	Dr. Suneel Deambi	Yes
BBP 155	Principles of Genetic Engineering and Recombinant DNA Technology	Core	3	28-14-0	Dr. Anandita Singh	Yes
NRE 113	Applied Mathematics	Audit and bridge course	0*	31-11-0	Dr. Akash Sondhi	Yes
BBP 158	Conceptual Foundations of Molecular Biology	Core	2	28-0-0	Dr. Ramakrishnan Sitaraman	Yes
BBP 154	Principles of Biochemistry and Biophysics	Core	2	28-0-0	Dr. Chaithanya Madhurantakam	Yes
BBP 111	Bioanalytical Techniques	Core	3	36-6-0	Dr. Udit Soni	Yes
BBP 121	Plant and Animal Biotechnology	Core	2	28-0-0	Dr. Shashi Bhushan Tripathi	Yes
BBP 174	Bioinformatics and Computational Biology	Core	2			Yes

Semester	Semester 2							
Course	Course title	Туре	Number	No. of	Course	Course		
No.			of	L-T-P	Coordinator	Offered		
			Credits					
TBA	Conservation Genetics and Genomics	Core	2		Dr. Shashi Bhushan	Т		
					Tripathi			
BBP	Biotechnology Laboratory - Part 2	Core*	7		Dr. Anandita Singh	Р		
102								
TBA	Introduction to Nanobiotechnology	Core	2		Dr. Udit Soni	Т		

Semester	2					
Course No.	Course title	Туре	Number of Credits	No. of L-T-P	Course Coordinator	Course Offered
BBP 130	Molecular Microbiology and Immunology	Core	2		Dr. Chaithanya Madhurantakam	Т
BBP 112	Statistics for The Life Sciences	Core	3	28-14-0	Dr. Prateek Sharma	Т
BBP 114	Molecular Cell Biology - From Genes to Communities	Core	2		Dr. Ramakrishnan Sitaraman	Т
TBA	Genome Organisation and Molecular Marker Techniques	Core	2		Dr. Anandita Singh	Т
BBP	Molecular Plant Physiology and	Specialisation	2		Dr. Shashi Bhushan	
156	Metabolism	(Plant Biotechnolog y)			Tripathi	
ТВА	Microbial Pathogenesis	Specialisation (Microbial Biotechnolog y)	2		Dr. Ramakrishnan Sitaraman	

 y)
 y)

 *Specialisation specific practical component equivalent to 2 credits will carried out under Biotechnology Laboratory- Part 2

Semester 3						
Course No.	Course title	Туре	Number of Credits	No. of L- T-P	Course Coordinator	Course Offered
BBP 103	Biotechnology Laboratory - Part 3	Core*	7			Р
BBP 141	Bioethics, IPR and Regulations in Biotechnology	Core	3			Т
TBA	Gene Expression Analysis and	Core	2		Dr. Ramakrishnan	Т

Semester 3	Semester 3									
Course No.	Course title	Туре	Number of Credits	No. of L- T-P	Course Coordinator	Course Offered				
	Transcriptomics				Sitaraman					
TBA	Proteomics and Protein Engineering	Core	2		Dr. Chaithanya Madhurantakam	Т				
TBA	Functional Genomics in Plants	Specialisation (Plant Biotechnology)	2		Dr. Anandita Singh					
TBA	Bioprocess Engineering and Environmental Biotechnology	Specialisation (Microbial Biotechnology)	2		Dr. Chaithanya Madhurantakam					

*Specialisation specific practical component equivalent to 2 credits will carried out under Biotechnology Laboratory- Part 3

Elective courses (Audit only)									
Course No.	Course title	Туре	Number of Credits	No. of L-T-P	Course Coordinator	Course Offered			
NRE 131	Environmental Chemistry and Microbiology	Elective	3	35-7-0	Dr. Udit Soni				
NRE 165	Introduction to Sustainable Development	Elective	1	14-0-0	D. Akash Sondhi				
TBA	Nanomaterials: Introduction and Applications	Elective	2		Dr. Udit Soni				
NRE 123	Biodiversity Assessment and Conservation	Elective	3	17-15- 20	Dr. Sudipta Chatterjee				
NRE 168	Food Security and Agriculture	Elective	3	23-16-6	Dr. Chubamenla Jamir				
NRE 112	Multivariate Data Analysis	Elective	3	28-14-0	Dr. Neeti				
NRE 151	Wildlife Conservation and	Elective	3	35-7-0	Dr. Sudipta				

Elective courses (Audit only)								
Course No.	Course title	Туре	Number of Credits	No. of L-T-P	Course Coordinator	Course Offered		
	Management				Chatterjee			

Co	urse tit	le: Biotechnolo	gy laboratory –	- Part 1				
Co	urse co	de:	No. of	L-T-P: (7-0-	Learr	ing ho	urs: 189	
			credits: 7	182)				
Pre	Pre-requisite course code and title (if any): None							
De	partme	nt: Department	t of Biotechnolo	ogy				
Co	urse co	ordinator: C	ourse instruct	or:				
Co	ntact de	etails:						
Co	urse tyj	pe: Core		Course off	ered in:	Semest	er1	
Co	urse de	scription:						
Th	e object	tive of this labo	oratory course is	s to introduce stud	ents to e	experim	ents	
rela	ated to b	viotechnology.	The course is do	esigned to teach st	udents t	he utili	ty of set	
ofe	experim	ental methods i	in biotechnolog	y in a problem-ori	ented m	anner.		
Co	urse ob	jectives:						
1.	To intro	oduce the stude	ents to standard	techniques of mol	lecular b	oiology	and GLPs	
	(good l	aboratory pract	ices).					
2.	To imp	art intensive ha	nds-on-training	g using molecular	tools in	a resear	rch	
	project	mode.						
3.	To train	n the students in	n designing exp	periments with app	oropriate	contro	ls.	
Co	urse co	ntents						
Mo	dule	Topic			L	Τ	P	
Su	ggested	practical						
1	Introd	uction to labora	atory safety and	safe practices	7	0	0	
	in biot	technology labo	oratory. Introdu	ction to Good				
	Lab P	ractices (GLP)						
2	Analy	tical Techniqu	ies and Bioche	mistry-	0	0	84	
	1.	Preparing vari	ious stock solut	tions, working				
		solutions, buf	fers solution.					
	2.	To prepare an	CH ₃ COOH-C	H ₃ COONa				
		buffer system	and validate th	e Henderson-				
		Hasselbach ec	quation.					
	3.	Quantitative a	analysis by UV-	-Vis				
		spectrophoton	neter- determin	ation of				
		unknown con	centration of K	MnO4 or BSA				
		Solution.by pl	lotting a standa	rd graph and				
		validating Bee	er- Lambert's L	law.				
	4.	Glucose assa	y by dinitro sal	icylic-				
		determination	of concentration	on of given				
		unknown gluc	cose solution by	/ DNS/glucose				
		assay by dinit	ro salicylic acio	1.				
	5.	To determine	concentration of	of unknown				
		protein by Bra	adford protein a	ussay method.				
	6.	To determine	concentration of	of unknown				
		protein by Lo	wry method/Lo	wry assay				
		method.						
	7.	Enzyme kinet	ic analysis of c	atechol				

ĺ			oxidation by catechol oxidases from			
			apple/potatoes/etc.			
		8.	Effect of temperature and enzyme inhibitor			
			on enzyme activity.			
		9.	To perform catalase assay on given plant			
			tissue			
		10.	To Perform Lysozyme crystallization using			
			vapor diffusion methods.			
		11.	Overexpression of the target gene in a			
			heterologous system			
		12.	To purify a histidine tagged protein using			
			Ni- NTA (Nitrilo -triacetic acid) affinity			
			chromatography			
		13.	To perform Ion exchange chromatography			
			for purification of target protein			
		14.	To perform gel exclusion chromatography			
			for purification of target protein till			
		1.5	homogeneity			
		15.	To perform SDS- PAGE for the protein			
	2	D	sample	0	0	20
	3	Essent	lai techniques in microbiology and	0	0	28
			Estimation of hastorial titra using colony			
		1.	counts from serial dilutions			
		2	Growth of bacterial culture and preparation			
		2.	of growth curve			
		3.	Isolation of pure bacterial cultures from			
			mixed cultures.			
		4.	Qualitative and quantitative analysis of			
			DNA.			
		5.	Isolation and restriction enzyme analysis of			
			DNA from soil samples.			
		6.	Methylation analysis DNA using restriction			
			enzymes.			
		7.	Gel purification of DNA by silica binding.			
		8.	Preparation of electrocompetent bacteria and			
			estimating their transformation frequency.			
	4	Isolati	on of nucleic acids and manipulation-	0	0	28
		1.	PCR and optimization of factors affecting			
		2	PCR			
		2.	PCR based genotyping for confirmation of			
		2	transgene insertion in plants			
		з.	isolation, qualitative and qualitative			
			analysis of total centular KINA IFOII			
		Л	Let strand a DNA synthesis and DT DCDa			
		4. 5	Restriction digestion of plant gDNA with			
		5.	rare and frequent cutters (restriction			
-1			ing and mequein cutters (restriction			

		enzymes)			
	6.	Purification of plasmids from E. <i>coli</i> cells			
	0.	(Alkaline Lysis method and spin-column			
		hased methods)			
	7	Linearization of plasmid vectors			
	8	Screening of recombinant plasmid vectors by			
	0.	PCP based genotyping of inserts and			
		restriction onzyma based release of inserts			
5	Dlant	and A nimel Biotechnology	0	0	42
Э		Demonstian of stack as bettern for about times	0	0	42
	1.	Preparation of stock solutions for plant tissue			
	2	culture media, vitamins and normones			
	2.	Sterilisation of explants and initiation of			
		cultures for micropropagation			
	3.	Initiation of various explants for direct and			
		indirect organogenesis			
	4.	Embryo culture			
	5.	Control of phenolics under tissue culture			
		conditions			
	6.	In vitro and ex vitro hardening			
	7.	Isolation of genomic DNA from plants			
	8.	ISSR/RAPD for clonal uniformity testing			
	9.	Cell viability assay			
	10	. Sub-culturing and maintenance of cell lines			
	11	. Genomic DNA isolation from blood/ cell			
		cultures			
Eva	aluatior	ı criteria:			
1. A	Attendar	nce: 5%			
2. F	Preparat	ion of lab record(s) throughout the semester :2.	5%		
3. E	End sem	ester evaluation: 70% (Following components v	vould be i	ncluded))
	a) Spo	ting - 15%		,	
	b) Viv	a-voce– 15 %			
	c) Exp	periment(s) assigned on the day of the exam- 40	%		
Lea	arning (outcomes:			
1.	Ability	to conduct experiments with adequate safety pr	ecautions		
2.	Capacit	ty to compare and evaluate various approaches i	n solving	a given	
	experin	nental problem.	0	0	
3.	Ability	to design and interpret molecular biology exper	iments.		
4.	Proficie	ency in defining a research problem, drawing lo	gical infe	rences fro	om
	results	and documenting outcomes in systematic manned	er.		
Pec		al Approach: Laboratory experiments demons	tration w	riting an	ł
exp	eriment	s result analysis		ing un	~
Ski	II Set.	5 200 an unui joio.			
	1 Abl	e to work in hiotechnology lab and perform exp	eriments		
	 Able to analyses experimental data and critical thinking 				
Fm	nlovah	e to anaryses experimental data and critical tilli	ning.		
	Cadem	ic and industrial research			
1.7	ndustria	ic and industrial research	ilturo		
2.1 N/	torial	is based on bioleciniology, pharmacy, and agric	unture.		
IVIA	uerials-				

1.	Study material and laboratory protocol will be provided by course
	instructor.
2.	"Biochemistry Laboratory: Modern Theory and Techniques" Rodney Boyer,
	second Edition, Pearson Education, 2012.
3.	"Analytical Techniques in Biochemistry and Molecular Biology" Rajan
	Katoch, Springer, 2011.
4.	"Molecular cloning: A laboratory manual" Sambrook, Joseph. & Russell,
	David W. & Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y :
	Cold Spring Harbor Laboratory, 2001.
5	"DNA and protein sequence analysis. A Practical approach" Bishop M.L.
01	Rawlings C I (Eds.)1997
	Ruwinigs C.J. (Eds.)1997.
Websit	e
1	https://nptel.ac.in/
Iourna	
100111a	
1.	Peer reviewed relevant scientific journals.
Advan	ced Reading Material
Will be	e provided by instructor if require.
Additi	onal information (if any)
List of	experiments given in each module are representative, instructor may choose
any of	them for student's laboratory training as per requirements.
Studer	nt responsibilities
1. Clas	s attendance.
2. Stud	y of course materials as specified by the instructor.
3. Reg	ular submission of given class assignments.
0	

Reviewers

- 1. Dr. Manoj Shrivastava, Principal Scientist, Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Nuclear Research Laboratory (NRL), Indian Agricultural Research Institute, New Delhi-110012
- 2. Dr. Rakesh Singh, M. Tech. (IIT, BHU) Ph.D. (NIPB, IARI) Principal Scientist (Plant Biotechnology) Division of Genomic Resources ICAR-NBPGR, New Delhi-110012

Course ti	t le: Plant and	Animal Biotechnolo	ogy					
Course co	ode: BBP	No. of credits: 2	L-T-P: 28-0-0	Learning hours: 2	28			
121 D	•4							
Pre-requi	site course c	ode and title (if any): Science graduat	e				
Course of	Department: Department of Biotechnology							
Contact d	orumator:		Course instruct	01.				
Course ty	ne . Core		Course offered	in• Semester 1				
Course de	escription:		Course oncrea	III. Demester 1				
The broad	objective of	the present core cour	rse is to provide ar	n overview of plant	and a	nima	1	
biotechno	logy. In this	respect, students will	be acquainted wi	th principles and ap	plicat	ions	of	
different t	echniques of	plant and animal cell	l/tissue culture and	l genetic transforma	tion.	In ca	ise	
of cell and	l tissue cultur	e, the focus shall be	on media composi	tion and preparation	n, met	thods	s of	
<i>in vitro</i> re	generation, th	eir applications and	limitations. With	respect to genetic tra	ansfor	mati	ion,	
the focus	will be on det	ection and characteri	ization of transform	mants. Further, the	global	stat	us	
of GMOs,	various case	studies illustrating th	he application of b	iotechnology in dev	velopi	ng ci	rop	
varieties r	esistant to var	rious biotic and abiot	tic stresses, enhand	cing nutritional qual	lity ar	ıd		
Knock-out	animal techn	lology would be deal	t in detail.					
Lourse of	pjecuves:	tudants to the princ	inlag and applicat	ions of plant tissue	a gult	uro	and	
1. 10 III anima	l cell culture	tudents to the princi	ipies and applicat	ions of plant ussu	e cun	ule	anu	
2 Devel	opment of pla	ant transformation ve	ectors specifically	designed to facility	ite tra	nsfei	r of	
impro	ved/unique g	enetic traits to plan	ts and to provide	e knowledge on di	verse	gen	etic	
transfe	ormation tech	nologies available	for the production	on of transgenic p	lants	in c	rop	
impro	vement progra	ams.	1	0 1			1	
3. Famili	arization wit	h knock-out and trag	nsgenic animals t	o model disease an	d stu	dy g	ene	
functi	on.		-					
Course co	ontents							
Module	Торіс				L	Т	P	
1	Principles o	of Plant Tissue Cult	ure		7	0	0	
	• History c	of plant tissue culture	;					
	• Set up of	a plant tissue culture	e laboratory					
	• Media co	onstituents and prepar	ration					
	 Micropro 	pagation and clonal	fidelity testing					
	• Meristem	1 culture for producti	on of virus free pl	ants				
	• Somatic	Embryogenesis						
	Organoge	enesis						
	Microgra	ifting						
•	• Hardenin	g and acclimatization	n			0	0	
2	Application	is of plant tissue cul	ture	6 1 11 1	6	0	0	
	• Anther, p	ollen and ovary cult	ure for production	of doubled				
	Productic	on of Triploids						
	Embryo	culture and embryo r	escue					
	Protoplas	st isolation. culture a	nd fusion					
	Cell culti	are and production of	f secondary metab	olites				
	 Cryopres 	ervation	· · · · · · · · · · · · · · · · · · ·					

	Synthetic seed technology			
3	Animal cell culture and biotechnology	8	0	0
	• Brief history of animal cell culture; cell culture media and			
	reagents (buffer and pH; blood buffering system)			
	• Basic techniques of mammalian cell culture			
	Organotypic and histotypic cultures			
	• Primary culture, secondary culture, continuous cell lines (cancer			
	cell line), suspension cultures			
	• Cell synchronization and transformation			
	• Clonal selection, cell fusion and monoclonal antibody production			
	• Application of animal cell culture for virus isolation and			
	production of human and animal viral vaccines			
	• Application of animal cell culture for disease modelling and high			
	throughput drug screening			
	• Application of animal cell culture for isolation of pharmaceutical			
	proteins and recombinant anti-bodies			
	• Development of iPSC and human specific disease modelling			
	Multiple Ovulation and Embryo Transfer Technology			
4	Applications of transgenic technology	7	0	0
	• Introduction to Agrobacterium tumefaciens and Ti Plasmids			
	• In-planta transformation methods			
	Chloroplast Transformation			
	• Detection, characterization and expression of transformants			
	(Genetic markers, reporter genes and transgene stability)			
	• Conferring resistance to biotic stresses (pests, viruses, fungi) and			
	abiotic stresses (salt, drought, heat)			
	• Enhancing nutritional quality of crops			
	• Transgenics for male sterility			
	• Marker free transgenics			
	• Knock-out/in animal development using embryonic stem cells			
	• Transgenic animal development to model disease and study gene			
	function			
	Total	28	0	0
Evaluatio	n criteria:		v	•
1. Test 1	- (Module 1) 30%			
2. Test 2	- (Module 2) 30%			
3. Test 3	- (Modules 3 and 4) 40%			
Learning	outcomes:			
1. Aı	understanding of principles of various plant and animal cell/tissue cult	ture		
tec	hniques (Test 1-3)			_
2. At	i understanding of commercial applications of various cell and tissue cu	ilture-	base	d
3 AF	pility to rationalize and develop strategies for incorporating novel traits	in nla	nts a	nd
an	imals through genetic engineering (Test 3)	P10	u	
Pedagogi	cal Approach:			
1. Or	lline/classroom lectures and discussions			

115

2. Case studies and examples from original research articles

Skill Set:

- 1. Formulation of media preparation for plant and animal cell cultures
- 2. Initiation and maintenance of plant and animal cell cultures
- 3. Genetic transformation of plants

Employabilty:

- 1. Academic organisations
- 2. Tissue culture facilities and horticulture companies
- 3. Agri-biotechnology and seed companies
- 4. Pharmaceutical and drug research companies
- 5. IPR consultancy firms

Materials:

Suggested Readings

- 1. George E. F., Hall A H, and De Klerk G J (2008) Plant propagation by tissue culture. Springer.
- 2. Bhojwani SS and Razdan M K (1996) Plant Tissue Culture : Theory and Practice. Elsevier.
- 3. Herman, Edwin B., (Ed.) (2009) Genetic modification of plants: methods and applications 2005-2009, USA: Agritech Consultants.
- 4. Herman, Edwin B., (Ed.) (2007) Microbial contaminants in plant tissue culture, Vol. III : 2003 2007. Agritech Consultants, Inc. Shrub Oak.
- 5. Neumann, K H, Kumar, A, Imani, J (2009) Plant Cell and Tissue Culture A tool in biotechnology : Basics and applications.
- 6. Halford,Nigel G. (Ed.) (2006) Plant Biotechnology: Current and Future Applications of genetically modified crops. John Wiley and Sons Ltd.
- 7. Chrispeels MJ; Sadava DE (2003) Plant, Genes and Crop Biotechnology. Jones and Bartlett Publishers, Inc.
- 8. Pörtner, R. (2007) Animal Cell Biotechnology: Methods and Protocols. Totowa, NJ: Humana Press.
- 9. Freshney R.I. (2010) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Wiley, John & Sons, Inc; New Jersey

Additional information (if any):

- Student responsibilities:
 - 1. Class attendance.
 - 2. Study of reading materials as specified by course instructor
 - 3. Self-study

Course reviewers:

- 1. Prof. Ranjit Kumar Giri, National Brain Research Centre, Manesar, Haryana
- 2. Dr. Modhumita Ghosh, Scientist G, Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu

Cours	e title: Bioanalytical Techniques			
Cours	No. of credits:L-T-P: 36-06-0Lea3	rning	hour	s: 42
Pre-re	equisite course code and title (if any):			
Depar	tment: Department of Biotechnology			
Cours	e coordinator: Course instructor			
Conta	ct details:			
Cours	e type: core Course offered in: Semester 1			
Cours	e description:			
This c	ourse is introduced to bridge the gap between academics	s, resea	arch a	nd
indust	ry. This course begins with a review of basic bio analyti	cal tec	hniqu	ie and
an intr	oduction to general terminologies. This course contains	bio ar	alytic	cal .
techni	ques along with their theory, working principal, commo	n instr	umen	tation
and po	ossible applications. This course will be equally benefici	al to v	arious	S 1
scienti	fic areas including, life science, chemical science, mate	rial sci	ence	and
enviro	nmental science.			
Cours	a objectives.			
1 Th	e primary objectives of this course are to develop the sk	ills to	under	rstand
the	theory and practice of bio analytical techniques.		under	otuna
2. To	provide scientific understanding of analytical techniques.	es and	detail	
int	erpretation of results.	, and		
Cours	e contents			
S.	Торіс	L	Т	Р
No				
1.	Spectroscopy study of chemical compounds and	7	3	0
	bio-molecules			
	Electromagnetic radiations and interactions with			
	matters: Electromagnetic spectrum. Quantization of			
	energy, Electronic, vibrational and rotational			
	spectroscopy. Franck–Condon principle, Jablonski			
	diagram, radiative, nonradiative pathways,			
	Iluorescence and phosphorescence. Absorption of			
	radiation, Beer-Lambert's law, deviation of Beer-			
	Lambert's equation and its initiations.			
	Principals instrumentation campling and			
	application of few snectrosconic techniques.			
	UV-Visible spectroscopy Fluorescence			
	spectroscopy, IR/Raman spectroscopy.			
	NMR Spectroscopy and Mass spectroscopy.			
	i ij iriitij			
2.	Microscopy: Principals, instrumentation and	7	2	0
	applications of imaging techniques: Dark-field, Phase			
	contrast, Fluorescence, Confocal microscopy, Atomic			
	force microscopy, and Transmission and Scanning			

	-			
	electron microscopy.			
3.	 Diffraction Technique: Crystal geometry and structure: Introduction to lattice and lattice systems, Bragg's plane, miller indices Principle of diffraction and X-ray diffraction: X-rays production, X- ray spectra, Bragg's law and intensity of X- rays, Mosley's law, powdered XRD, percentage crystallinity, single crystal XRD, macromolecular XRD (protein crystallization, data collection and structure solution). 	7	0	0
4.	 Chromatography: Classification of chromatographic techniques and their principles, Theory of chromatography, band broadening, rate and plate theory factors responsible for separation. Column chromatography, TLC, Paper chromatography. Liquid Chromatography and HPLC: Instrumentation, pumps, solvent delivery system, isocratic and gradient programming modes, sample introduction system, columns, detectors, reversed phase and normal phase chromatography. Gas Chromatography: Instrumentation, carrier gas supply, injectors, columns, packed and capillary columns, column oven and temperature programming, different detectors. Introduction to hyphenated techniques in chromatography, GC-MS and LC-MS. 	6	1	0
5.	Electrophoretic Techniques: Principle, equipment and process, Agarose gel electrophoresis, horizontal and vertical gel electrophoresis, electrophoresis techniques, Isoelectric focusing, capillary electrophoresis and application of electrophoresis in analyzing macromolecules.	6	0	0
6.	Automation: Interdisciplinary association, Automation in analysis, sample collection, sample process, High Throughput Process, High throughput screening	3	0	0
	Total	36	6	0
Evalu 1. Te 2. Te 3. Te 4. A Learn	Iation criteria: est 1: 30% est 2: 30% est 3: 30% ssignment/Presentation: 10% ning outcomes:			
	o i i i i i i i i i i			

1. Students will be able to use selected analytical techniques. (Test 1-3) 2. Students become familiar with working principals, tools and techniques of analytical techniques. (Test 1-3) 3. Students will understand the strengths, limitations and creative use of techniques for problem-solving. (Test 1-3 and Assignment/Presentation) **Pedagogical Approach:** Classroom/online lectures, tutorials, and demonstration of analytical techniques. Case studies based on peer reviewed research articles. **Skill Set:** 1. Able to select analytical technique for case study. 2. Able to design experiments and understand the instrumentation. **Employability:** 1. Academic and industrial research organization. 2. Industries based on biotechnology, pharmacy, agriculture, and chemical. **Materials: Suggested readings:** 1. I. D. Campbell, *Biological spectroscopy* (Benjamin/Cummings Pub. Co, Menlo Park, Calif, 1984), Biophysical techniques series. 2. K. Wilson, J. M. Walker, Eds., Principles and techniques of biochemistry and molecular biology (Cambridge University Press, Cambridge, UK : New York, 7th ed., 2009). 3. R. F. Boyer, Biochemistry laboratory: modern theory and techniques (Prentice Hall, Boston, 2nd ed., 2012). 4. R. Katoch, Analytical techniques in biochemistry and molecular biology (Springer, New York, 2011). 5. D. L. Spector, R. D. Goldman, Eds., Basic methods in microscopy: protocols and concepts from cells: a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 2006). 6. R. L. Switzer, Experimental biochemistry (W. H. Freeman and Co, New York, 3rd ed., 1999). R. F. Boyer, Modern experimental biochemistry (Benjamin Cummings, 7. San Francisco, 3rd ed., 2000). J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, New 8. York, 2006; http://site.ebrary.com/id/10229235). 9. B. Fultz, Transmission electron microscopy and diffractometry of materials (Springer, Berlin; New York, 2nd ed., 2002). 10. D. B. Williams, C. B. Carter, Transmission electron microscopy a textbook for materials science (Springer, New York, 2009; http://dx.doi.org/10.1007/978-0-387-76501-3). 11. R. M. Silverstein, Spectrometric identification of organic compounds (John Wiley & Sons, Hoboken, NJ, 7th ed., 2005). 12. D. Harvey, Modern analytical chemistry (McGraw-Hill, Boston, 2000). Additional information (if any): Please keep in mind that this course, require hands on experience to strengthen the concepts; however, this course provides supplemental material in order to

communicate this information.

Student responsibilities:

- 1. Class attendance.
- 2. Study of course materials as specified by the instructor.
- 3. Regular submission of given class assignments.

Reviewers-

- 1. Dr Narendra Tuteja, Visiting Scientist and Former Group Leader/Senior Scientist, PMB Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi.
- 2. Dr. Anil K. Malik, Professor, Department of Physics, Ch. Charan Singh University, Meerut, India, Teachers' Fellow UGC, Govt. of India.

Course title: Principles of genetic	engineering a	and recor	nbinant DNA to	echnology
Course code: BBP 155	No. of cred	l its: 3	L-T-P: 28-	Learning hours:
			14-0	42
Pre-requisite course code and tit	le (if any):			
Faculty: Anandita Singh		Depart	ment: Departm	ent of Biotechnology
Course coordinator(s):		Course	instructor(s):	
Contact details:		~		
Course type: Core		Course	offered in: Se	mester 1
Course description:				
The ability to genetically manipula	ate and engine	er genor	nic sequences b	by precise
recombination of genetic elements	across organ	$\frac{1}{1}$ ismal bot	undaries lies at	the core of
biotechnology. This foundation lev	el core cours	$e_{1S} des_{12}$	aned for student	ts interested in
developing a conceptual framewor	k and technic	al know-	how on genetic	engineering
methodologies. Upon successful co	ompletion of	the cours	e, students will	gain an in-depth
knowledge in principles of genetic	manipulation	and Will	I develop an ap	preciation on
Students will goin profision ov in a	i driving Kæl	J across	multiple branch	icalation
manipulation nevel design of gond	reative depio	og An in	traduction to n	isolation,
DNA modifying onzumos will be	sinc sequence	es. All III ith thair	applications Fo	operfies of general
concentualization innovation evo	lution and an	nii ulen	applications. FC	will be discussed in
context to thermo stable polymera	ses An introd	plication to	versatile and a	typical modifying
enzymes including non-specific en	donucleases i	inction it	n new-age mut	ation technologies and
genome engineering research will	he provided	Cloning (strategies with 1	the contextualized to
vector categories and applications	such as plant	transform	nation protein	expression genomic
and cDNA library construction to 1	name a few. F	lost spec	ificities and des	sign of selection and
screening strategies will be illustra	ted. Approacl	hes for si	te-directed mut	agenesis of cloned
genomic fragments will be taught.	Basic and ad	vanced a	nalytical techni	ques of molecular
biology will not be covered in this	course. To en	sure cov	erage and sufficient	cient depth on
contemporary tools, outmoded me	thods no long	er used h	as been intentio	onally avoided.
However, students will be oriented	l to historical	informat	ion for illustrat	ing evolution of
procedures used in contemporary b	biological rese	earch. Fii	hally, an exposu	are will be provided to
software used for <i>in-silico</i> annotati	ion and manip	oulation of	of DNA sequen	ces for efficient
design, tracking, and management	of cloning ex	periment	ts in the laborat	ory.
Course objectives:	0	•		<u>,</u>
1. To develop an appreciation fo	r importance	of funda	amental knowle	edge in discovery and
innovation of modern day tools	s and techniqu	ues of ge	netic engineerir	ng
2. To provide a theoretical an	d practical	framewo	rk underlying	recombinant DNA
technology				
3. To train and provide tech	nical skills	to stud	ents for devi	sing broad research
methodologies by creative dep	loyment of ge	enetic eng	gineering techn	iques
~				
Course contents				

		L	Τ	P
1	Properties and applications of DNA Modifying Enzymes: Host	7	7	
	controlled restriction modification system (Type I-IV restriction			
	endonucleases, Isoschizomers and Neoschizomers, Homing			
	Endonucleases); DNA Methyltransferases; Methylation Dependent			
	Restriction Endonucleases; Exonucleases and non-specific			
	endonucleases (Cas9 endonuclease, Structure and mis-match			
	specific endonucleases: Fok I, FEN, Endo, Cel I and other site			
	directed nucleases); Genome Editing with Engineered Nucleases			
	(GEEN), Ligases; site-specific Recombinases used in cloning			
	technologies; DNA polymerases: Special case of thermo-stable			
	DNA polymerases in context to PCR (History, concept, invention,			
	enzymology, applications); Reverse transcriptases and expression			
	analysis (semi-quantitative and quantitative RT-PCRs);			
-	Phosphatases and Kinases	-		
2	Generalised cloning strategies	3	1	
	Host genotype specificities; classical and contemporary strategies			
	for selection and screening; Marker and reporter genes; positive			
	and negative selection; insertional inactivation; α -			
	complementation; TA-cloning vectors; TOPO-TA and GATEWAT			
3	Voctor aptogories and selection schemes	8	2	
3	Vector categories and selection schemes History and evolution of plasmid and L ambda phase based vectors	0	2	
	and their derivatives (Insertional vectors replacement vectors			
	cosmids phasmids phagemids <i>in-vitro</i> packaging): High-cloping			
	capacity vectors (Virus based single stranded DNA vectors: M13			
	fd f1: YACs BACs PACs BIBACs): Plant transformation			
	vectors (Binary and Conjugate), Components of Gene expression			
	Cassettes: Protein Expression Vectors (expression systems for high			
	level protein expression in <i>E. coli</i> and yeast, transcriptional control.			
	inducible promoters, translational efficiency, translational			
	initiation, elongation, codon usage), protein extraction and			
	purification (protein purification tags, Histidine and GST tags,			
	IMAC)			
4	DNA modifying enzymes and labelling of nucleic acid	2		
	sequences			
	End-Labelling (3'- and 5'-), Random priming and Nick translation			
	using radioactive non-radioactive labelling techniques.			
5	Construction of genomic DNA libraries Procedures for partial,	2		
	representative, enriched, large-insert DNA libraries in context to			
	medium and high-capacity cloning vectors; cDNA libraries (Self-			
	priming methods, replacement synthesis, Okayama and Berg			
	strategy, use of Adapters/Linkers and methylation for directional			
-	cloning)			
6	Site Directed Mutagenesis	2		
	PCR based methods for site-directed mutagenesis (Single primer			
	methods viz. Mis-incorporation of mismatched oligos, Over-lap			
	extension), whole plasmid single round PCR), mis-repair of mutant			

	oligonucleotides, selection of mutant (dut/ung E. coli strains for				
	SDM through uracil replacement), Ligase chain reaction				
7	Sequence verification: Reading electropherograms, in-silico		4		
	analysis, plasmid mapping software for cloning designs; annotation				
	of DNA sequence features				
8	Genetic manipulation to Genome Modification and	4			
	Engineering:				
	Impact of Genetic engineering on Transgenic Technology, Genome				
	Editing: Case Studies from Biomedical research and crop				
	biotechnology in Research and Development				
	Total	28	14		
Eva	aluation criteria:				
1.	Test 1: 30%				
2.	Test 2: 30%				
3.	Test 3: 30%				
4.	Assignments/Presentations: 10%				
Lea	arning outcomes:				
1.	Technical know-how on versatile techniques in recombinant DNA technology	ogy (T	est 1	-3,	
	Assignments)			,	
2.	Understanding in application of genetic engineering techniques in basic and	l appl	ied		
	biological research (Test 1-3, Assignments)				
3.	Proficiency in designing and conducting experiments involving genetic ma	nipula	ation		
	(Test 1-3, Assignments)	1			
Peo	lagogical Approach:				
Leo	Lectures and tutorials in online or offline mode with a major emphasis on the detailed				
dise	discussion of original research articles				
Ski	Il Set:				
1.	Isolation, manipulating, design and analysis of DNA sequences using D	NA n	nodif	ying	
	enzymes		•		
2.	2. Designing cloning experiments using routine and specialized vectors for such applications				
	as plant transformation, protein expression and genomic DNA library construction				
3.	3. Editing genomic sequences using site-directed mutagenesis				
Em	plovability:				
1.	Science Education, Research and Development, Management and Bio-serv	ices			
2.	2. Bio-pharma and Agri-biotechnology companies				
3.	Law firms and knowledge processing organizations (IP management consultancy)				
4.	4. Regulatory bodies and funding agencies				
Ma	terials:				
Bo	oks				
1.	1. M. R. Green, J. Sambrook. Molecular Cloning: A Laboratory Manual (Cold Spring				
	Harbor, ed. 4, 2012).				
	M Wink An Introduction to Molecular Riotechnology Molecular Fundamentals Methods				
2.	and Applications in Modern Biotechnology (Wiley ed 2, 2011)				
2.	and Applications in Modern Biotechnology (Wiley, ed. 2, 2011).	mais,	Meth	lous	
2.	and Applications in Modern Biotechnology (Wiley, ed. 2, 2011). K. Wilson, J. Walker, Principles and Techniques of Biochemistry and Molec	ular F	Meth Biolog	v	
2. 3.	and Applications in Modern Biotechnology (Wiley, ed. 2, 2011). K. Wilson, J. Walker. Principles and Techniques of Biochemistry and Molec (Cambridge University Press. ed. 7, 2010)	ular E	Biolog	sy Sy	
2. 3.	 and Applications in Modern Biotechnology (Wiley, ed. 2, 2011). K. Wilson, J. Walker. Principles and Techniques of Biochemistry and Molec (Cambridge University Press, ed. 7, 2010). B. R. Glick, I.J. Pasternak and C.L. Pattern, Molecular Biotechnology: Principles 2010 (Cambridge University Press, ed. 7, 2010). 	ular E	Biolog	gy Sy	
2. 3. 4.	 and Applications in Modern Biotechnology (Wiley, ed. 2, 2011). K. Wilson, J. Walker. Principles and Techniques of Biochemistry and Molec (Cambridge University Press, ed. 7, 2010). B. R. Glick, J.J. Pasternak and C.L. Pattern. Molecular Biotechnology: Prince Applications of Recombinant DNA (ASM Press, ed. 4, 2010). 	ular E viples	Biolog	gy	

- 5. S. B. Primrose, R. Twyman. Principles of Gene Manipulation and Genomics (Wiley-Blackwell, ed. 7, 2006)
- 6. M. M. Burell. Enzymes of Molecular Biology (Humana Press, 1993)
- 7. H. M. Eun. Enzymology Primer for Recombinant DNA Technology (Academic Press, 2008)

Additional information (if any): The list of books suggested in the readings will only provide basic knowledge on the concepts. The actual readings will involve comprehension of prescribed Journal articles and Reviews across topics.

Representative Software (Source):

- **1.** Gene Construction Kit® (**GCK**) (http://www.textco.com/gene-construction-kit.php): DNA manipulation and analysis tool, useful in plasmid mapping and restriction based cloning operations.
- **2.** Gene Inspector® (**GI**) (http://www.textco.com/gene-construction-kit.php): DNA and protein sequence analysis package.
- **3.** Vector NTI® Software (http://www.lifetechnologies.com/in/en/home/lifescience/cloning/vector-nti-software.html): Integrated suite for sequence analysis

Student responsibilities:

- 1. Class attendance
- 2. Study of course materials as specified by the instructor
- 3. Self-study

Course reviewers:

The course was previously reviewed and commented on by the following experts: 1. Prof. Anil Grover Head, Department of Plant Molecular Biology University of Delhi, South Campus, New Delhi- 110021, India

Dr. Neeti Sanan Mishra
 Group Leader: Plant RNAi,
 International Centre for Genetic Engineering and Biotechnology
 Aruna Asaf Ali Marg
 New Delhi-110 067, India

Course title: Conceptual Foundations of Molecular Biology								
Course cod	e:	No. of credits: 2 L-T-P: 28- Lear		Lear	ning l	ours	5:	
				0-0	28			
Pre-requisi	te course code and title	e (if any): N	one					
Departmen	t: Department of Biotec	chnology						
Course coo	rdinator(s):		Course	instructor(s):				
Contact det	Contact details:							
Course type: CoreCourse offered in: Semester 1								
Course dese	cription: The objective	of this found	dational o	course is to fam	iliarize	stude	ents o	f
varied acade	mic backgrounds (inclu	uding non-bi	ology de	gree holders) w	ith the			
interdiscipli	nary knowledge that un	derlies mole	cular bio	logy. The appro	ach wi	ll not	only	
ensure the tr	ansmission of this know	wledge, but a	uso empl	hasize the scient	ific me	ethod,	creat	ive
thought proc	cesses, fortuitous discov	veries and ele	egant exp	erimental appro	baches	that le	ed to	
classic insig	nts and discoveries in the	nis field. In	e course	will be taught w	vith a s	pecial	IOCU	s on
the overarch	ing framework of evolu	litionary theo	ry that u	ndernes all of b	1010gy.	Orig	inai	ha
research arth	detail Finally the yel	reviews mg	formation	seminal insign	is in in	e neic	l WIII otoile	be
discussed in	of instances of gene reg	ulation	Iormatio	II will be unders	coreu	by a u	etane	u
Course abi	or instances of gene leg	uiatioii.						
1 To prov	ide students of varied	hackground	s the his	tory of ideas in	n and	the th	ieore	tical
1. To plov	molecular biology	Dackground	s the ms	tory of fideas in	ii, and	une u		tical
2 To highl	ight the interdisciplinar	v nature of r	naior adv	vances in molec	ular bio	alogy		
3 To prese	nt an overview of gene	regulation	najor au v	ances in moree		JI059.		
4 To empl	hasize the importance of	of evolution:	arv theor	v in the unders	standin	σ of k	violos	vical
phenome	ena		ury theor	y in the under	Junan	5 01 0	10102	Siear
Course con	tents							
S.No						L	Т	Р
Module 1	The Importance of E	Evolutionary	Theory	to all Biology				
	Early evolutionary ide	eas; Darwin,	Mendel	and the modern		3		
	synthesis; symbiosis a	and evolution	n; natural	selection acros	S			
	scales – from molecul	les to comple	x system	18				
	Beyond dichotomies -	- evolution a	nd molec	cular phylogeny	•	3		
	formulation of the three	ee-domain sy	ystem of	classification by	y			
	Woese and Fox, gene	transfer and	role of v	iruses in evolut	ion.			
Module 2	The Development of	Molecular l	Biology					
1	Historical background	1				3		
	The scientific method	, vital force t	theory, cl	lassic experiment	nts			
	related to vital force th	heory and sp	ontaneou	s generation				
2	Physico-chemical app	roach to biol	logy			3		
	The influence of What	t is life by So	chrodinge	er on molecular				
	biology							
3	The nature and mutab	ility of the g	enetic ma	aterial		4		
	The chromosomal loc	ation of gene	es, DNA	as the genetic				
	material, DNA structu	ure, semi-con	servative	e replication of				
	DNA, the Luria-Delbr	ruck fluctuat	ion test.					
4	The flow of genetic in	nformation				4		
	The central dogma and	d its continu	ing releva	ance, sequence				
	hypothesis, adaptor hy	ypothesis, me	essenger	RNA				

125

5 The physical nature and universality of Mendel's 'genes'	4		
Benzer's experiments on phage T4, the existence and nature of			
the triplet code			
6 Gene expression and control	4		
Positive and negative control of gene expression, considerations			
in the global regulation of gene expression			
Total		0	0
	28		
Evaluation criteria:			
Test $1 - 30\%$ weightage			
Test 2 – 30% weightage			
Test 3 – 40% weightage			
Learning outcomes:			
1. Understanding of essential evolutionary concepts and their application to r	nolecu	lar	
biology (Tests 1-3).			
2. Recognition of crucial advances in molecular biology based on model syst	ems.	(Test	s 2-
3).			
3. Knowledge of different modes and levels of the regulation of gene regulation	on (Te	est 3)	•
4. Critical analysis of primary scientific literature (Tests 1-3).			
5. Problem-solving skills (Tests 1-3).			
Pedagogical Approach:			
Online/offline lectures emphasizing the detailed discussion of research/review	article	es fro	m
scientific journals in class.			
Skill Set:			
1. Design of molecular biology/genetic engineering experiments.			
2. Critical analysis of molecular biology/genetic engineering experimental res	ults.		
3. Formulation of experimental strategies for molecular genetic studies of sim	ple m	odel	
organisms.			
Employability:			
1. Academic and industrial research involving molecular biology approaches.			
2. Intellectual property firms.			
3. Life science teaching at school and undergraduate levels.			
Materials:			
Required texts			
1. E. Schrödinger. What Is Life? : The Physical Aspect of the Living Cell with	Mind	and	
Matter and			
Autobiographical Sketches (Cambridge University Press, Canto series, Cambridge University Press, Press, Canto series, Cambridge University Press, Canto seri	oridge,	11th	
reprint, 2004).			
2. J.C. Herron, S. Freeman. Evolutionary Analysis. Pearson Education, India. ed. 5, 2013.			
3. J. D. Watson, F. H. C. Crick. Nature, 3, 737-738 (1953).			
4. M. Messelson, F. W. Stahl. Proc. Natl. Acad. Sci. USA, 44, 671-682 (1958).			
5. F. H. C. Crick. Nature, 227,561-563 (1970).			
6. F. H. C. Crick et al. Nature, 192, 1227-1232 (1961).			
7. S. Benzer. Proc. Natl. Acad. Sci. USA, 45, 1607-1620 (1959).			
8. S. Benzer. Proc. Natl. Acad. Sci. USA, 47, 403-415 (1961).			
9. S. Brenner. Proc. Natl. Acad. Sci. USA, 43, 687-693 (1957).			
10. S. Brenner et al. Nature, 190, 576-581 (1961).			
11.G. W. Beadle, E. L. Tatum. Proc. Natl. Acad. Sci. USA, 27, 499-506 (1941).			

126

12.O. T. Avery et al. J. Exp. Biol., 79, 137-158 (1944).

13.S. E. Luria, M. Delbrück. Genetics, 28, 491-511 (1943).

14.B. Magasanik. Proc. Natl. Acad. Sci. USA, 97, 14044-14045 (2000).

15.C. R. Woese, G. E. Fox. Proc. Natl. Acad. Sci. USA, 74, 5088-5090 (1977).

16. T.H. Morgan. Sex-limited inheritance in Drosophila, Science, 32, 120-122 (1910).

Suggested readings

1. J. D. Watson., *et al.* Molecular Biology of the Gene. Pearson, Cold Spring Harbor, ed. 7, 2014.

2. B. Alberts, et al. Molecular Biology of the Cell. Garland Science, New York, ed. 5, 2008.

3. J. E. Krebs *et al.* Lewin's GENES XII. Jones and Bartlett Publishers, Inc., Burlington, ed. 12, 2017

4. T. H. Morgan *et al.* The Mechanism of Mendelian Heredity. Henry Holt and Company, New York, 1915.

Case studies

Websites

Journals

Other readings

Additional information (if any):

Student responsibilities:

1. Class attendance (online/offline).

2. Study/self-study of course materials as specified by the instructor.

3. Ensuring functionality of essential IT hardware & software at their preferred location(s).

Course reviewers:

1. Dr. Neel Sarovar Bhavesh, Group leader (equivalent to Professor), International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi – 110067, India.

2. Prof. Vijaya Satchidanandam, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru (superannuated) and Adjunct Professor, St. John's Medical College, Sarjapur Road, Bengaluru – 560034

Course ti	tle: Principles	of Biochemi	istry an	d Biophysics			
Course co	ode: BBP	No. of cred	lits: 2	L-T-P: 28-0-0	Learni	ng hour	s: 28
Pre-requisite course code and title (if any): Science graduate							
Departm	ent: Departme	ent of Biotech	nology	v e			
Course co	oordinator:		Cours	se instructor			
Contact d	letails:						
Course ty	v pe: Core		Cours	se offered in: Semester 1			
Course d	escription:						
Course description: The course is designed to provide students with basic concepts, principles and applications of biochemistry and biophysics. This is aimed at providing information on molecular logic of life, supramolecular chemistry, structure and function of macromolecules, molecular circuits/ information processing cellular networks, cell mechanics and dynamics, molecular bioenergetics, and applications. The course will provide inputs on how emerging biochemical and biophysical techniques greatly enhanced our understanding of biological systems and functioning. Furthermore, the course is focused on recent developments and evolving scenarios in biochemistry and biophysics and will be a good platform for students to further pursue their careers in sciences. Course objectives: 1. Introduction to the molecular components of a cell, complex chemistry, and their interactions with the environment. 2. Familiarization of students with the macromolecular structural organization and relation to the functional significance of such a conformation through enzyme kinetics. 3. Acquainting the students with concepts of cell mechanics and applications, cellular dynamics and techniques employed. 4. Familiarization with biomolecular interplay involved in signal transduction and ubiquitination, apoptosis, transport mechanisms and metabolic pathways. 5. Providing students with fundamentals of laws of thermodynamics, Non equilibrium thermodynamics and cellular bioenergetics.					ons of gic of cuits/ ecular mical s and lving urther		
Course co	ontents						
Module	Торіс				Ι	Δ T	P
Module 1	: Biomolecule	es and supra	molec	ular chemistry			
1.1	Biomolecules Environment (Specific and Repulsions, H Fluctuating D Hydrophobic	s, Bioactive c , Supra-mole l Non-specifi Electrostatic l Dipoles, Hydi Effect, Cour	compou cular C c Mole Interac rogen F nter-ior	Inds and Molecular Chemistry of Biomolecules cular, Interactions, Short ran tions, Dipolar, Interactions, Bonding, Cation- π Interaction n Release)	nge 4 ns,	0	0
Module 2	: Structure a	nd function	of mac	romolecules			
2.1	Levels of Str structure, Pro Ramachandra Proteins & R	uctural Organ otein structure an's Plot, Pro egulatory Pro	nization e, DSS otein Fo oteins,	n & Conformation, DNA P Classification, olding & Misfolding, Structu Enzyme catalysis and kineti	ural 4 cs	0	0
Module 3	: Cell mechar	ning and dyn	•				
moune o	. Sen meena	IICS AIM HVH	amics				
3.1	Fundamenta Bio-membrar	als in cell me	echanic echanic	25 vity Fluidity Permeability s	and 4	0	0

	Dynamics), Membrane Channels, Ion pumps & Transporters,					
	Membrane Potential, Diffusion coefficient, association and					
	Brownian motion in biological systems					
	Cytoskeleton dynamics, models, and techniques					
	Force generation by cellular polymers, Power stroke and					
2.2	Brownian ratchet models of molecular motors, Helix-Coil	6		0		
3.2	transition model (DNA and Protein), Reynolds Number,	0	0	0		
	Fluorescence Correlation Spectroscopy, Patch Clamps					
	(electrophysiology), Cytological Optical Tweezers					
Module 4	: Molecular circuits and signalling					
	Signal Transduction Cascades, Primary and Secondary					
	Messengers, EGF Signalling and Receptor Tyrosine Kinases					
4.1	the Ras-MAPK pathway, Wnt Signalling, Apoptosis, Ubiquitin	4	0	0		
	Respiration					
Module 5	5: Thermodynamics in biosystems					
	The Laws of Thermodynamics, Gibbs free energy and Free					
energy changes, Redox Potentials and energy currency, The			0	0		
5.1	Three Levels of Bioenergetics in Eukaryotes/ Energy Transfer	5	0	U		
within Biosphere, Non-Equilibrium Thermodynamics (NET)						
5.2	Thermogenesis, Uncoupling Protein Thermogenin and	2	0	0		
5.2	Mitochondrial Thermogenesis, Chloroplast Bioenergetics	5	0	0		
	Total	28	0	0		
Evaluatio	on criteria:					
4. Test 1	30%					
5. Test 2 30%						
6. Test 3	6 (end semester) 40%					
Learning	outcomes:					
1. An und	lerstanding of the basic components and chemistry involved in cel	l survi	val (Te	sts 1,		
2 & 3)						

2. An insight into macromolecular organization and its structural as well as functional importance (Test 1 & 2).

3. The ability to apprehend the concepts of cell dynamics and techniques employed to study cell mechanics (Test 2).

4. A detailed analysis of various signalling mechanisms vital for living systems. Grasp of molecular networks and their interplay (Test 3).

5. The ability to understand molecular bioenergetics and apply the energy transformation mechanisms and laws governing the transformations (Test 3).

Pedagogical Approach:

- 1. Online/Offline teaching.
- 2. Providing case studies to support the concepts.
- 3. Peer-reviewed research articles to discuss various modules in the course.

Skill Set:

- 4. Analytical skills based on case studies provided.
- 5. Knowledge of macromolecular applications in various sectors.
- 6. Knowledge of techniques employed to understand cellular systems.

Employability:

The course will provide skillsets and knowledge that may play key role to get employed in Universities, R & D industry, Medical centres/Colleges, Research Institutes and Diagnostic centres apart from specialized units like pharma, breweries, dairy and agri sectors.

Materials: Suggested Readings

- Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev. 2016 Feb 24;116(4):1693-752. doi: 10.1021/acs.chemrev.5b00516. Epub 2015 Dec 24. PMID: 26702928.
- RAMACHANDRAN GN, RAMAKRISHNAN C, SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95-9. doi: 10.1016/s0022-2836(63)80023-6. PMID: 13990617.
- 3. Dobson CM. Protein folding and misfolding. Nature. 2003 Dec 18;426(6968):884-90. doi: 10.1038/nature02261. PMID: 14685248.
- Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem. 2017 Jun 20;86:27-68. doi: 10.1146/annurev-biochem-061516-045115. Epub 2017 May 12. PMID: 28498720.
- Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577-637. doi: 10.1002/bip.360221211. PMID: 6667333.
- Michaelis L, Menten ML, Johnson KA, Goody RS. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry. 2011 Oct 4;50(39):8264-9. doi: 10.1021/bi201284u. Epub 2011 Sep 9. PMID: 21888353; PMCID: PMC3381512.
- Ait-Haddou R, Herzog W. Brownian ratchet models of molecular motors. Cell Biochem Biophys. 2003;38(2):191-214. doi: 10.1385/CBB:38:2:191. PMID: 12777714.
- 8. Mereghetti, P., Kokh, D., McCammon, J.A. *et al.* Diffusion and association processes in biological systems: theory, computation and experiment. *BMC Biophys* **4**, 2 (2011). https://doi.org/10.1186/2046-1682-4-2
- Lamparter L, Galic M. Cellular Membranes, a Versatile Adaptive Composite Material. Front Cell Dev Biol. 2020 Aug 5;8:684. doi: 10.3389/fcell.2020.00684. PMID: 32850810; PMCID: PMC7419611.
- 10. Strasser A, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem. 2000;69:217-45. doi: 10.1146/annurev.biochem.69.1.217. PMID: 10966458.
- 11. Wallace DC. Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man. *Proc Natl Acad Sci U S A*. 2010;107 Suppl 2(Suppl 2):8947-8953. doi:10.1073/pnas.0914635107
- 12. Biochemistry, 4th Edition, Donald Voet, Judith G. Voet, ISBN: 978-0-470-57095-1.
- 13. Biophysical Chemistry, Vol I, II & III by Charles R. Canter and Paul R. Shimmel. (A classic textbook)
- 14. The Biophysical Chemistry of Nucleic Acids and Proteins: Thomas E. Creighton;,Helvetian Press; 2010.

Additional information (if any): Not Applicable

Student responsibilities:

Study of course material as specified by the instructor.

Course reviewers:

1. Prof. Gourinath Samudrala, School of Life Sciences, Jawaharlal Nehru University (JNU), New Delhi- 110067

E-mail: sgourinath@mail.jnu.ac.in

2. Dr. Vivekanad V, Ramalingaswami Fellow, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan - 302017

E-mail: vivekanand.cee@mnit.ac.in

10, INSTITUTIONAL AREA, VASANT KUNJ, NEW DELHI

SUB: 49th MEETING OF THE ACADEMIC COUNCIL

Enclosures

Date: 17 July 2021Venue: Online - Microsoft Team PlatformTime: 10.30 AM

Item No. Particulars

Enclosure 1 Elst of experts for beleenon committee	Enclosure 1	List of experts	for Selection	Committee
--	-------------	-----------------	---------------	-----------

Enclosure 2 Anomaly in the course credits and teaching weeks

Enclosure 3(a) Criteria for continuation of registration to subsequent semester

Enclosure 3(b)Conversion of CGPA grades into percentage

- Enclosure 4 Copy of UGC notification for extension and the list of doctoral scholars
- Enclosure 5 New course outlines
- Enclosure 6 Guidelines and course outlines of project/thesis/internships
- Enclosure 7 Outlines of Ph.D programmes
- Enclosure 8 New programme structure of the M.Sc. (Biotechnology) Programme offered by Department of Biotechnology
- Enclosure 9 Change in the structure of the M.Sc. (Economics) Programme offered by Department of Policy Studies

Enclosure 9

Change in the structure of the M.Sc.	(Economics)	Programme	offered by
Department of	Policy Studio	es	

Semester	Current Structure	Proposed Structure	
Semester 1	Probability and Statistics (4 credits):4 Core Courses (Total 16 credits):Probability and Statistics (4 credits)4 Core Courses (Total 16 credits):Mathematical Methods for EconomicsProbability and Statistics (4 credits)Mathematical Methods for EconomicsMathematical Methods for Economics(4 credits)Macroeconomics (4 credits)Macroeconomics (4 credits)Macroeconomics (4 credits)Microeconomics (4 credits)Microeconomics (4 credits)		al 16 credits): stics (4 credits) ds for Economics credits) credits
Semester 2	4 Core Courses (Total 16 credits): Econometrics (4 credits) Environment and Economic Development (4 credits) Growth Economics (4 credits) Development Economics (4 credits)	Detal 16 credits):4 Core Courses (Total 16 credits):redits)Econometrics (4 credits)EconomicEnvironment and Economicredits)Development (4 credits)s (4 credits)Growth Economics (4 credits)nomics (4 credits)Development Economics (4 credits)	
Semester 3	3 Core Courses + Elective Courses worth 8 credits (Total 20 credits): Methods of Research in Economics (Core; 4 credits) Environmental Economics (Core; 4 credits) Natural Resource Economics (Core; 4 credits) Elective Courses worth 8 credits (see list below)	3 Core Courses + Elective Course worth 4 credits (Total 16 credits): Methods of Research in Economics (Core; 4 credits) Environmental Economics (Core; 4 credits) Natural Resource Economics (Core; 4 credits) Elective Course (see list below)	
Semester 4	Master's Thesis (20 credits)	Option between Thes Coursework Track (1 Master's Thesis (16 credits)	sis Track and .6 credits) Elective Courses worth 16 credits (see list below)
Total	72 credits	64 credits	

The list of courses approved for offering as elective in the MSc Economics programme is given below:

Indian agricultural development: Contemporary Issues Economics of health and environment Trade, Development and Environment Time series and regression analysis Advanced Econometrics Microeconomics-II

132

Labour Economics Ecological Economics Energy Economics Advanced Macroeconomics Industrial Organisation Theory of Contracts Law and Economics Theory of Finance Public Economics Collective action and environmental management

It is proposed that if this structure is approved, the assessment criteria of electives offered by the programme in its fourth semester will place higher weightage on term papers/literature survey, presentations etc. This will enable the students to apply their learning to problems of current interest and in turn, improve their job market prospects.

The students of the programme can also fulfil their elective credit requirements from courses offered in other programmes in the institute, subject to approval from the Programme Coordinator.

Background for the proposed change:

A similar programme structure, conceived by the MPEC of MSc Economics programme on the basis of student feedback, was placed and approved at the Board of Studies meeting on 25th April 2018. This structure was shared with stakeholders including recruiters, academicians, current and past students to obtain their feedback. The Academic Council suggested further changes that led to the current programme structure as approved in its 43rd meeting dated 12th June 2018. The Academic Council further recommended that "the structured feedback from various stakeholders be obtained in order to take inputs on the programme structure and analysis of the same be presented in the next Academic Council".

The current programme structure was implemented from the July-December semester of 2018. Since students are the most important constituent of stakeholders, the MPEC Economics collected structured feedback from two batches of students, viz., the 2018-20 batch and the 2019-21 batch. The salient features of the feedback (Annexure D) are presented in the Table below.

Salient Features of Student Feedback on Programme Structure (Total 51 respondents				
from two batches)				
Major Shortcomings of current structure (60% respondents listed at least one)	 (a) Less number of subjects/electives on offer (b) Too much focus on research (c) Busy schedule of assessments (d) The courses are less practical in nature 			

Comparison to previous structure	About 60% respondents preferred the current structure over the previous one
Distribution of credits	About 60% respondents felt that the current distribution is appropriate
Electives in third semester	About 80% respondents felt that there should be more electives to choose from in third semester
Electives in fourth semester	About 55% respondents did not feel need of electives in fourth semester, while rest felt the need of electives in the fourth semester, but either as an option to be exercised, or to make up for lost credits
Electives in the second semester	Almost 80% respondents wanted electives to be introduced in the second semester Itself
Master's Thesis be made non-compulsory	About 40% respondents wanted master's thesis to be made non-compulsory, while about 60% wanted master's thesis to remain Compulsory

It follows from the student feedback that while a section of the students value the research orientation of the programme, another section wanted to exercise freedom in terms of choosing more electives. This necessitated that the course structure approved by the Board of Studies in its April 2018 meeting be revisited.

Feedback was collected from academicians, employers and alumni (Annexure A-C) seeking their opinion on a programme revision in the lines of the course structure approved by the Board of Studies in its April 2018 meeting. The salient features of this feedback, which reaffirm the justification of the proposed change in programme structure, are presented below.

Salient Features of Stakeholder Feedback on Programme Structure		
Stakeholder type	Feedback	
Academicians (16 respondents)	 Most respondents felt that (a) the proposed changes in the programme structure satisfy the objectives better than the old one. (b) exercising the course track option may affect the future career prospects of the students positively. (c) the programme with proposed changes will continue to imbibe research aptitude among the students, as it will allow the interested students to commit to producing quality dissertations. 	

Recruiters (5 respondents)	Recruiters mostly agreed that proposed changes can help in imbibing most of the qualities that they would like a future employee to possess.
Alumni (4 respondents)	Alumni members found that less number of electives offered is a shortcoming of the current structure. The responses were equally divided on offering master's thesis as an optional track.