Course No.:	ENR 136
Course title:	Solar Thermal and Solar Photovoltaic Power
Generation	
Core or elective:	Elective
Number of credits:	3
Number of lectures-tutorial-lab:	33-00-18
Course coordinator:	Prof. R L Sawhney

Course Outline:

This elective course is to develop capability in the students to design solar thermal and solar photovoltaic power generating units in various modes for example: standalone, grid connected, hybridization. Financial and related environmental implications of the two systems, Case studies and actual application of available software for design of solar power systems are also covered.

Evaluation Procedure:

•	Assignments:	20%
•	Design of a case study:	30%
•	Major test:	50%

S.	Торіс	Allotted time (hrs)		
No.		L	Т	Р
1	Solar radiation – Review. Models for radiation analysis and beam	1		
	radiation calculations.			
2	Solar concentrators:			
	Parabolic trough, paraboloidic dish: continuous type and Fresnel type	3		
3	Tracking mechanisms: single axis and double axis trackings	3		
4	Solar thermal technologies:			
	a) Solar Parabolic trough: design considerations, tracking and control			
	systems, thermal design of receivers,			
	b) Solar parabolic dish: design considerations, Sterling engine,			
	Brayton cycle, tracking and control systems,			
	c) Solar tower concepts: tower design, heliostat design, receiver			
	types, tracking and control systems			
	Material and product/technology overview for the above technologies	6		
	Emerging technologies:			
	Linear Fresnel reflector, Solar chimney	2		
6	Heat transfer fluids and storage systems:			
	Technology overview, design considerations, materials.	3		
	Solar thermal power plants:			
	Performance study, site selection and land requirement	3		
8	Solar PV power plants:			
	Solar PV technologies overview - stationary and concentrated PV, inverter			
	and control technologies, master slave inverter system design, standalone			
	systems, grid connected systems, hybridization, synchronization and	_		
	power evacuation, site selection and land requirements	5		-
9	Techno-economic analysis of solar thermal and solar PV power plants	2		
-	Environmental considerations, GHG calculations	2		
11	Application of softwares:			
	TRNSYS, RETScreen, Solar advisor			
	Design of one each solar thermal and solar PV power plant			12

S.	Торіс	Allotted time (hrs)		
No.		L	Т	Р
12	Jawaharlal Nehru National Solar Mission, MNRE guidelines. DPR			
	preparation for power plants	1		6
13	Seminar on case studies	2		
	Total	33	0	18

Suggested readings

Text Books:

- 1. Renewable Energy Engineering and Technology A Knowledge Compendium, ed. VVN Kishore (TERI Press, 2008).
- 2. CS Solanki: Solar Photovotaics Fundamentals, Technologies and Applications, (PHI Learning)

Reference Books:

- 1. JA Duffie and WA Beckman: **Solar Engineering of Thermal Processes**, Third Edition (John Wiley & Sons)
- 2. S Sukhatme and J Nayak: Solar Energy: Principles of Thermal Collection and Storage, Third Edition (Tata McGraw Hill, 2008)

Reviewers:

- 1. Mr Shirish Garud, TERI, Delhi
- 2. Dr B D Sharma, Consultant, Delhi
- 3. Mr Mahesh Vipradas, Suzlon, Delhi