Course No.: ENR 139

Course title: Fluid Mechanics and Turbomachinery

Number of credits: 3

Number of lectures-tutorial-lab: 36-6-0

Course coordinator: Dr. Najmur Rahman

Course outline:

The aim of this core course is to make the student understand basic principals and equations of fluid mechanics and its various engineering applications e.g. flow in pipes, drag and lift generated in stationary and rotating impellers and blades, energy requirements of pumps, blowers and fans, centrifugal compressors and power generation from gas and steam turbines.

Evaluation procedure:

Assignments: 10%Minor tests: 40%Major test: 50%

Details of course contents and allotted time

S. No.	Topic	Allotted time (hours)		
		Lectures	Tutorials	Practicals
1	Introduction:	3	1	
	Classification of fluid flows, system and control			
	volume, fluid properties, fluid statistics, hydrostatic			
	forces on submerged surfaces, fluids in rigid-body			
	motion, fluid kinematics, Reynolds transport theorem			
2	Mass, Bernoulli and energy equations, energy	4	1	
	analysis of steady flows, conservation of momentum,			
	linear momentum equation, angular momentum			
	equation			
	Differential analysis and modeling			
3	Flow through pipes:	6	1	
	Entrance region, laminar and turbulent flows in			
	pipes, minor losses, piping systems and pump			
	selection, flow rate and velocity measurement			
	devices			
4	Differential analysis of fluid flow:	3	1	
	Continuity equation, divergence theorem, stream			
	function, Navier-Stokes equation and its approximate			
	solutions			
5	Flow over bodies:	5	1	
	Drag and lift, friction and pressure drag, flow			
	separation, parallel flow over flat plates, flow over			
	cylinders and spheres			

S. No.	Topic	Allotted time (hours)		
		Lectures	Tutorials	Practicals
6	Compressible flow:	4	1	
	Stagnation properties, Mach number and shock			
	waves, one dimensional isentropic flow, nozzles and			
	diffusers, adiabatic duct flow with friction			
7	Turbomachinery:	11		
	Pumps: centrifugal, axial, dynamic and positive			
	displacement pumps and their characteristics,			
	cavitation, serial and parallel combination, affinity			
	laws, specific speed, open and ducted axial fans,			
	centrifugal blowers, compressors			
	Turbines: impulse, reaction, dynamic and positive			
	displacement turbines, gas and steam turbines			
	Total	36	6	

The course is reviewed and commented by the following experts.

- 1. Prof S C Mullick, IIT, Delhi
- 2. Mr Mahesh Vipradas, Suzlon, Delhi

Suggested readings

1. Fluid Mechanics: Fundamentals and Applications by YA Cengel and JM Cimbala: Tata McGraw Hill