Course title: Climate lab				
Course code: NRC 101No. of credits: 2L-T-P: 14-0-28Learning hours: 42				
Pre-requisite course code and title (if any):				
Department: Energy and Environment				
Course coordinator(s): Dr Kamna Sachdeva Course instructor(s): Dr Kamna Sachdeva				
Contact details: kamna.sachdeva@terisas.res.in				
Course type: Core Course offered in: Semester 1				
Course description				
The course is intended to provide practical knowledge to the students of MSc climate science				
and policy related to air pollution, water pollution and combustion processes. Also under this				
course students will be taught to study thermodynamic graphs to understand microphysical				
processes of the atmosphere.				
• The course is intended to provide practical knowledge related to sir pollution water				
 The course is intended to provide practical knowledge related to air pollution, water pollution & combustion processes 				
To provide basic practical understanding related to meteorology and its relationship with				
climates studies				
Course content				
Module		L	Т	Р
1.	Introduction to Sample collection techniques and error	4	-	-
	calculations	-		
2.	Air	3		10
	Ambient monitoring: SPM, RSPM, SOx, NOx			
	Data analysis and interpretation			
3.	Water and soil	4		10
	Dissolved oxygen: General considerations, environmental			
	significance of dissolved oxygen, collection of samples for			
	determination of dissolved oxygen, methods of determination.			
	BOD: General consideration, nature of BOD reaction, method of			
	measurement, application of data			
	COD: General consideration, methods of measurement,			
	application of data in environmental science			
	Soil: soil moisture and organic carbon determination			
4.	Combustion	1		4
	Calorific value determination and fuel efficiency calculations			
5.	Thermodynamic diagrams	2		4
	Introduction of concepts of thermodynamic diagrams and its			
	application in climate studies. Determination of cloud height and			
	extreme weather 4events	14		20
Evol	a ouitoria	14		28
■ Viva test: 50%				
Practical/project: 50%				

Learning outcomes

- Able to read basic thermodynamic diagrams for few atmospheric phenomenon and extreme event
- Students will be able to relate connection between environmental pollution and climate change issues

Pedagogical approach

Materials

Required Text

- 1. Standard Methods for the Examination of Water and Wastewater Published by APHA 15th ed.
- 2. Thomas D.P. (2003) Handbook of Weather, Climate and Water: Dynamics, Climate, Physical Meteorology, Weather Systems and Measurements, John Wiley and Sons, USA.

Suggested Readings

- 1. For heat of combustion tables of various fuels and organic compounds on Wikipedia, see: http://en.wikipedia.org/wiki/Heat_of_combustion#Heat_of_ combustion_tables
- 2. Harrison T., Shallcross D. and Henshaw S. (2006) Detecting CO₂-the Hunt for Greenhousegas Emissions, *Chemistry Review*, 15, 27-30.
- 3. Marshall J. and Plumb R.A. (2001) Atmosphere, Ocean and Climate, *Elsevier*, Amsterdam.
- 4. Seinfeld J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons.
- 5. Wallace and Hobbs (2006) Atmospheric Science-an Introductory Survey, Second Edition, *Academic Press Elsevier*.

Journals

- 1. Combustion and Flame
- 2. Environmental Pollution
- 3. Environmental Science and Technology

Additional information (if any)

Student responsibilities

The students are expected to submit assignments in time and come prepared with readings when provided.

Course Reviewers

The course is reviewed by the following experts.

- 1. Dr Umesh Kulshreshta, Professor, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi.
- 2. Dr. Minal Pathak, CEPT, Ahemdabad, Gujarat.
- 3. Dr. Pankaj Mehta, Faculty, Jammu University, Jammu, Jammu and Kashmir.