Course title: Introduction to Climate Modelling				
Course code: NRC 122 No. of credits: 3 L-T-P: 28-10-8 Lea		rning hours: 42		
Pre-requisite course code and title (if any): Environmental Statistics				
Department: Energy and Environment				
Course coordinator(s): Course instructor(s): Mr Saurabh Bhardwaj				
Contact details: saurabh.bhardwaj@teri.res.in				
Course type: ElectiveCourse offered in: Semester 2				
Course description				
On completion of this course, students should be able to understand fundamental principles of climate				
science depicted in the models, various types and usage of modelling activities, and basic				
programming required to obtain modelling skills. The lectures will lead to basic understanding of				
atmospheric processes, modelling framework under IPCC working papers and case studies involving				
usage of modelling into impact studies.				
Course objectives				
The objective for this courses it to introduce postgraduate students to the principles of climate and				
Earth System modelling and aspects of climate simulation.				
Course content				
Module	Торіс	L	Т	Р
1.	Fundamental Forces			
	Pressure Gradient Force, Centrifugal Force, Gravity Force, Coriolis	4	2	
	Force			
2.	Numerical Weather Prediction (NWP) Fundamental equations of fluid			
	motion in rotating and non-rotating fluid in different coordinate		4	
	system, Principle of Weather Forecasting, General Circulation of	4	4	
	atmosphere and Ocean			
3.	Introduction to Climate Models			
	a. Basics of models			
	i. Concept of Parameterizations, time-stepping and resolution			
	b. Framework and process of model simulations	8	2	
	c. Types of Models			
	d. Uncertainties and sensitivity			
	e. Case Studies			
4.	Introduction to Climate processes			
	a. Basic understanding on Climate Sciences			
	b. Uncertainty	6	2	
	c. IPCC and working Group 1 projections: Global to Regional aspects			
	d. Case Studies – illustrations			
5.	Introduction to Linux operating system and FORTRAN programming	6		8
	Total	28	10	8
Evaluation criteria				
 Test 1 	: 20%			
• Test 2: 20%				
• Test 3: 60%				
Learning outcomes				
At the end of the course, the student should be				
Able to explain different forces influencing the climate system				
• Describe principles behind use of appropriate model inputs and outputs				
Able to understand fundamentals of NWP models and its applicability				
Pedagogical approach				
Class room teaching with few hands-on exercises on programming				

Materials

Required text

- 1. Goosse H., Barriat P.Y., Lefebvre W., Loutre M.F. and Zunz V., Introduction to Climate Dynamics and Climate Modeling.
- 2. James R.H. An Introduction to Dynamic Meteorology, International Geophysics Series
- 3. Steven A. Ackerman and John A. Knox, Meteorology Understanding the Atmoshere

Suggested readings

- 1. Geoffrey K.V. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation.
- 2. Jacobson M.Z. Fundamentals of Atmospheric Modeling.
- 3. McGuffie K. (Henderson-Sellers A., A Climate Modelling Primer, John Wiley & Sons.
- 4. Taylor F.W. Elementary Climate Physics.
- 5. Washington W.M. and Parkinson C.L.Introduction to Three-dimensional Climate Modeling

Websites

1. IPCC (2001 & 2007) Working Group I Report "The Physical Science Basis"

Journals

- 1. Geophysical Research
- 2. Global Environmental Change
- 3. Climate Dynamics
- 4. Current Science

Advanced Reading Material

Additional information (if any)

Regular Assignment and reading will be given on weekly basis

Student responsibilities

The students are expected to submit assignments in time and come prepared with readings when provided.

Course Reviewers

- 1. Dr. Madhusoodanan M.S., Associate Professor, Amrita University.
- 2. Prof A K Dimri, School of Environmental Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi.