Course ti	tle: Basics of climate science			
Course c	ode: NRC 131 No. of credits: 3 L-T-P: 28-14-0 Learnin	g hou	ırs: 4	2
Pre-requ	isite course code and title (if any): None			
Departm	ent: Energy and Environment			
Course c	oordinator(s): Dr. Kamna Sachdeva Course instructor(s): Sachdeva	Dr.	Ka	mna
Contact	details: kamna.sachdeva@terisas.ac.in			
Course ty	ype: Compulsory CoreCourse offered in: Semester 1			
Course d	escription			
The aims	of this course are to provide basic understanding about the clim	ate s	ystem	: its
attributes	, underlying processes, and the drivers of climate change. The c	ourse	expl	ores
the physic	cal processes that control sub systems of climate such as atmosph	ere a	nd oc	ean.
The cours	se will include topics like water in atmosphere, severe storms, gl	obal	warm	ing,
and ener	gy budget to provide basic understanding about the impo	rtant	conc	epts
underlyin	g the climate-system and changes therein.			
Course o	bjectives			
	nderstand the essential principles of Earth's climate system and	l gett	ing b	asic
know	ledge about Science behind the phenomenon of Climate Change.			
Course c	ontent			
Module	Торіс	L	Т	Р
1.	Introduction to Climate Science	6	4	
	Introduction to atmospheres: retaining the atmosphere, its			
	vertical structure and residence time. Fundamentals of physical			
	meteorology: perfect gas law; Energy budget and greenhouse			
	effect			
2.	Components of Climate Science	6	4	
	Climate System and Interaction among components of climate			
	system and feedback mechanisms. Water in the atmosphere;			
	clouds and precipitation. Global climate change and Coriolis			
	force, Coriolis force and storms.			
3.	Paleoclimatology	6	4	
	Evidences of climate change; Ice and climate change; Isotope			
	evidence for Climate Change; Heinrich events; Dansgaard-			
	Oeschger events			
4.	Aerosol Science	6	2	
	Introduction and overview of aerosols, radiative effects of			
	aerosols: direct and indirect; scattering and absorbing			
	behaviour of aerosols.			
5.	Climate Modeling	4		
	Introduction to global and regional climate models, its			
	applications and importance.			
	Total	28	14	

Evaluation criteria

Course grades will be based on the following criteria:

- Three mid-term exams: 60%
- Test 3:

Learning outcomes

Upon completion of the course, students would be able to:

40%

- Understand that any change /variability we are observing today is not arbitrary, everything has scientific basis
- Explain the workings of the climate systems and feedback mechanisms

Pedagogical approach

Lectures, tutorials, lab experiments and case studies

Material

Suggested Readings

Textbooks

1. Ahrens, C. Donald. Essentials of Meteorology. Brooks Cole, 2004.

Other Readings

- 1. Barbara J. Finlayson Pitts and James N. Pitts, Jr (2000). Chemistry of the upper and lower atmosphere- theory, experiments and applications Academic Press, San Diego
- 2. John H.Seinfeld and Spyros N.Pandis (2006). Atmospheric Chemistry and physicsfrom air pollution to climate change, John Wiley and Sons, INC
- 3. Potter, Thomas D (2003). Handbook of weather, climate, and water: Dynamics, climate, physical meteorology, weather systems, and measurements. John Wiley and Sons, USA

Additional information (if any)

- Research paper reading and discussions
- Symposium on latest work in the related areas

Student responsibilities

The students are expected to submit assignments in time and come prepared with readings when provided.

Course Reviewers

The course is reviewed by the following experts.

- 1. Ramesh P. Singh, Ph.D., Professor, Earth System Science and Remote Sensing, Department of Physics, Computational Science and Engineering, Schmid College of Science, Chapman University.
- 2. Professor Arun K. Attri, Atmospheric Chemistry and Aerosol Science Lab, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi.