Course ti	itle: Earth System Sciences			
	ode: NRC 136 No. of credits: 3 L-T-P: 42-0-0 Learnin	g hou	s : 42	
Pre-requ	isite course code and title (if any): None	8		
	ent: Energy and Environment			
	coordinator(s): Dr. Chubamenla Course instructor(s):	Dr. Ch	ubam	enla
Jamir	Jamir			
Contact	details: chubamenla.jamir@terisas.ac.in			
	ype: Compulsory Core Course offered in: Semester 1			
	lescription			
	ose of the course is to develop a holistic understanding of Earth	n's syst	em. E	arth
	cience is inherently interdisciplinary in scope, linking oceanogra			
•	estrial sciences, climatology, hydrology, biology, physics, a		-	
	d the environment and climate. After the course, the students			
appreciate	e the importance of taking a systemic approach in understanding	the ear	rth sys	stem
and for m	anagement of different earth components, natural resources and c	limate.	·	
Course o	bjectives			
 To ur 	nderstand the basic principles of Earth's system, its various con	nponen	ts and	l the
inter-	linkages between these components.			
 To un 	derstand how the interplay between various earth's spheres influe	nces cl	imate	
Course c	ontent			
Module	Торіс	L	Т	P
1.	Overview; Systems approach to understand and analyze	2		
	environmental systems; Sustainability and challenges			
2.	Ocean	5		
	Marine food and economic resources; sustainability issue;			
	distribution of temperature and salinity; ocean currents; ocean			
	and climate			
3.	Climate	6		
	Temperature and pressure belts of the world; Heat budget of the			
	earth; Atmospheric circulation; atmospheric stability and			
	instability. Air masses and fronto-genesis, Temperate and			
	tropical cyclones; Climatic regions; Global climatic change and			
	role and response of man in climatic changes			
4.	Biogeography	5		
	Genesis, classification and distribution of soils; Factors			
	influencing world distribution of plants and animals;			
	conservation measures; Sustainability issues.			
5.	Earth dynamism	4		
	Earth's interior; Geosynclines; Plate tectonics; mountain			
	building; Volcanicity; Earthquakes and Tsunamis, management			
	of natural disasters.			
6.	Human population	5		
	Growth and distribution of world population; demographic			
	attributes; concepts of over-under-and optimum population;			
	Population theories, Regional planning and planning for			
	sustainable development.			

	Total	42	0	0
	power; Institutional factors: land holdings, land tenure and land reforms; Cropping pattern, agricultural productivity, agricultural intensity, crop combination, land capability; Green revolution and its socio- economic and ecological implications.			
	India's environmental and economic resources; agriculture and food security: Infrastructure: irrigation, seeds, fertilizers,			
8.	India's Environmental resources and management	8		
	and droughts; Climatic regions; Soil types and distribution.			
	Structure and relief; Drainage system and watersheds; Mechanism of Indian monsoons and rainfall patterns, Floods			
7.	India's environmental setting	7		

Evaluation criteria

- Test 1: 20%
- Test 2: 20%
 Assignments: 10%
- Assignments: 10%
 Test 3: 50%

Learning outcomes

Upon completion of the course, students would be able to:

- Understand the various components of the earth's system and its interlinkages
- Explain the workings of the earth's system and feedback mechanism

Pedagogical approach: Lectures, tutorials and case studies

Suggested Readings

Textbooks

- 1. Strahler, 2010. Physical geography, John Wiley & Sons, Inc., USA.
- 2. Holden, 2012. An Introduction to Physical Geography and the Environment. Pearson Education Limited, Essex, England.
- 3. Knowled R. and Wareing J., 1990. Economic and Social Geography: Made Simple, New Delhi, Rupa Publications, India.
- 4. Singh, 2015. Physical Geography, Pravilika Publications, India.
- 5. Bryant R.H. (1990) Physical Geography: Made Simple, Rupa Publications, New Delhi.
- 6. Thornbury WD (2004), Principles of Geomorphology, CBS publication

Journals

Additional information (if any)

Research paper reading and discussions

Student responsibilities

The students are expected to submit assignments in time and come prepared with readings when provided.

Course Reviewers

The course is reviewed by the following experts.

1. Dr Pawan Kumar Jha, Earth and Planetary Sciences, University of Allahabad.

- 2. Dr. Tamoghna Archarya, Xaviers School of Sustainability, Bhubaneshwar.
- 3. Dr. Gurmeet Singh, Futuristic Research Division, National Centre for Sustainable Coastal Management, Ministry of Environment and Forests, Chennai.