Course ti	tle: Advance Climate Modelling					
Course code: NRC172 No. of credits: 3 L-T-P: 24-12-12 Learning hours: 42						
Pre-requisite course code and title (if any): Introduction to Climate Modelling (Sem 2)						
Department: Department of Energy and Environment						
Course coordinator: Course instructor: Mr. Saurabh		Bhardw	aj			
Contact	letails: saurabh.bhardwaj@teri.res.in	l				
Course ty	vpe: ElectiveCourse offered in: Semester 3	Course offered in: Semester 3				
Course Description						
On completion of this course, students should be able to understand fundamental principles of						
climate modelling architecture, their physics and dynamics, their bias methodology and their						
practical usability. The course explains how climate models work and operate under various						
uncertainty and constraints. The course would also have hands on activity on using the models and						
generating and analyzing climate data for further usage						
Course objectives						
• Ir	troduce students to the practical usability of climate models					
Understand the structure and usage of various data products in climate sciences						
• B	ecome mindful of the necessary technical know-how of running, tes	sting and	d evalu	ation a		
climate model dataset.						
Course C	Contents	T		1		
Module	Торіс	L	Т	P		
1.	Basics of Global Climate and climate variability	4				
	Climate sciences (Radiative forcing, energy budget, ENSO, IOD					
	etc.)-					
	a) Atmospheric flows and forces					
	b) Modelling architecture					
	c) Modelling basics, equations, types and usability					
2.	Atmospheric Dynamics concepts -	4	4			
	a) Flow balances, thermal wind, circulation and vorticity					
	b) Circulation theorem					
	c) Kinematics of pressure systems					
3.	Building blocks of a climate system model –	6	4			
	a) Model Components					
	b) Resolved processes (dynamical and kinematics)					
	c) Numerical representation of atmospheric and oceanic					
	d) Atmospheric model L and model Lee model					
1	Testing of Models	6		2		
4.	a) Model Bias	0		2		
	b) SST Sea Ice precipitation model and natural variability					
	c) Uncertainty and sensitivity					
	d) Model skill					
5	Hands On -	4	4	10		
5.	a) Model porting and running on Linux machines (WRF.	•		10		
	PRECIS etc)					
	b) Different grid systems and data formats					
	c) Open source climate datasets and their types					
	d) Climate data generation via modelling tools					
	e) Concept of validation					
	f) Climate data analysis via CDO					
	g) Trend plotting, bias, error estimation					

Total	24	12	12				
Evaluation procedure	•						
Test 1: 20%							
Test 2: 20%							
Assignments (including tutorials): 20%							
Test 3: 40%							
Learning outcomes							
Developed understanding of dynamical processes in a model							
• Ability to port and run a simple model							
Ability to distinguish between different climate data operators							
Application of modelling outputs towards extreme climate analysis							
Pedagogical approach							
Class room teaching with hands-on exercises on climate data analysis							
Materials							
List of practicals							
1. Model porting techniques							
2. To understand different grid systems and data formats							
3. Working knowledge of open source climate datasets and their types							
4. Generation of Climate data via modelling tools							
5. Concept of validation							
6. Climate data analysis using CDO							
7. Trend plotting, bias, error estimation in climate datasets							
Required text							
1. Gettelman A. and Rood R.B., Demystefying Climate Models.							
2. Goosse H., Barriat P.Y., Lefebvre W., Loutre M.F. and Zunz V., Introduction to Climate							
Dynamics and Climate Modeling.							
3. James R.H. An Introduction to Dynamic Meteorology, International Geophysics Series							
4. Steven A. Ackerman and John A. Knox, Meteorology Understanding the	Atmosph	ere					
5. Thomas T Warner, Numerical Weather and Climate Prediction							
Suggested readings							
1. Jacobson M.Z. Fundamentals of Atmospheric Modeling.							
2. McGuttie K. (Henderson-Sellers A., A Climate Modelling Primer, John	2. McGuffie K. (Henderson-Sellers A., A Climate Modelling Primer, John Wiley & Sons.						
3. Washington W.M. and Parkinson C.L, Introduction to Three-dimensiona	Climate	Modeli	ng				
Websites							
websites							
1. www.m2iab.org							
Journals							
Journals 1 Geophysical Research							
1. Geophysical Research 2. Global Environmental Change							
2. Climate Dynamics							
A Current Science							
Additional information (if any)							
Regular tutorial and assignments will be given							
Student responsibilities							
Attendance timely feedback discipline: as per university rules adopt peer 1	arning a	nd know	vledge				
sharing within the class.							
sharing within the class.							

Course Reviewers

The course is reviewed by the following experts.

- 1. Dr. Akhilesh Mishra, Associate Faculty (Courtesy Appointment) COAPS, The Florida State University, Tallahassee, FL, USA and Associate Professor and Coordinator, Interdisciplinary Center for Climate Research and Policy, Amity University, Jaipur, Rajasthan.
- 2. Dr. Madhusoodanan M.S., Associate Professor, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore 641 112, Tamil Nadu.