Course title: Groundwater Hydrology and Management								
Course code: NRE 163	No. of credits: 3	L-T-P: 30-12-0	Learning hours: 42					
Pre-requisite course code and title (if any): NRE 111 Applied Mathematics, NRE 162 Hydrology								
Department: Energy and Environment								
Course coordinator:		Course instructor: Ms Ranjana Ray Chaudhari						
Contact details:								
Course type: Elective		Course offered in: Semester 3						

Course Description

This course will provide an insight into the field of groundwater hydrology. The students will equip themselves with the knowledge of interpretation of groundwater data, conducting the surface and subsurface investigations for the groundwater using the latest methods and tools. The students will be able to learn basic fundamentals of groundwater flow, storage and yield. They will also learn various methods of well development. The concepts of groundwater basin management, conjunctive use, competing demands, recharge and mining will add in equipping students to take better decisions in groundwater management.

Course objectives

- 1. To learn basic fundamentals of groundwater flow
- 2. To learn the hydraulics of different kinds of wells
- 3. Conjunctive use of ground water along with other fresh water sources

Course content

SNo	Topic	L	T	P
1.	Ground Water			
	Introduction of ground water resources: Global and Indian	10	4	
	perspectives			
	Occurrence of ground water			
	Geological factors governing the occurrence of ground water			
	Hydraulics of ground water			
	Aquifers and their types and important terms related to ground water			
	Governing equation of ground water flow in aquifers			
2.	Groundwater well Hydraulics			
	Geophysical methods in ground water exploration	8	4	0
	Open wells or dug wells			
	Tubewells			
	Yield of wells and tubewells by Thiem's and Dupuit's equilibrium			
	formula			
	Hydraulics of wells			
	Quality and quantity of ground water and its usefulness in water			
	supply			
3.	Salt Water Intrusion			
	Saline water intrusion	6	2	0
	Relationship between fresh and saline water			
	Structure of fresh-salt water interface			
	Control of saline water intrusion			
4.	Ground water contamination and management			
	Contaminant transport in groundwater and management	6	2	0
	Concepts of basin management			
	Equations of hydrologic equilibrium			
	Groundwater basin investigation			
	Salt balance			
	Basin management by conjunctive use			

Water harvesting and recharging to aquifers				
	Total	30	12	

Evaluation criteria

2 minor tests: 20% each
Quizes and tutorials: 20 %
Major test: 40%

Learning outcomes

- 1. Interpretation of groundwater field data, identify pollutants, saline water intrusion
- 2. Ability to conduct surface and sub-surface investigations of groundwater using latest technology and methods available
- 3. Would be equipped to decide on conjunctive water use, including ability to identify competing water demands, allot ground water usage according to yield of existing aquifer.

Pedagogical approach

Materials

Required text

- 1. Fetter C.W. (2001) *Applied Hydrogeology*, Fourth Edition, CBS Publishers and Distributors, New Delhi.
- 2. Raghunath H.M. (2007) Groundwater, 3rd edition, New Age International Publishers.
- 3. Todd D.K. (1980) Groundwater Hydrology, John Wiley and Sons.

Suggested readings

- 1. Fetter C.W. (1990) *Applied Hydrogeology*, 2nd Edition, CBS Publishers and Distributors, New Delhi.
- 2. McWhorter D.B. and Sundada D.K. (1977) *Ground-Water Hydrology and Hydraulics*, Water Resources Publications, P.O. Box 303, Fort Collins Colorado, U.S.A.
- 3. Raghunath H.M. (1987) Groundwater, 2nd Edition Wiley Eastern Ltd.
- 4. Rastogi A.K. (2008) *Numerical Groundwater Hydrology*, Penram International Publishing Pvt. Ltd., Bombay.
- 5. Todd D.K. (1980) *Groundwater Hydrology*, John Wiley and Sons.

Case studies

Websites

Journals

- 1. ASCE Journal of Water Resources Planning and Management
- 2. Water Resources Research

Additional information (if any)

Student responsibilities

Attendance, feedback, discipline, guest faculty etc