Cours	se title: Fate, Transport, and Transfo	ormation of Atmo	spheric Pollutants			
Course code: NRE 179		No. of credits: 2	L-T-P: 28-00-00	Learning hours: 42		
	equisite course code and title (if an					
	rtment: Department of Natural Reso					
	se coordinator: Prof. Suresh Jain	Course	instructor:			
	act details:					
	se type: Elective	Course	offered in: Semeste	r 3		
	se Description					
	course provides state-of the-art know	0			•	
	prology (Fate, Transport, and Tran					
	with: the atmosphere's chemical co					
	chemistry) processes in gas phase					
	formation of the important gases					
	tant substances; interaction of electr					
	e air (gas and particles); transport	1	0	0		
	s on changing atmospheric compo	osition on the gl	obal climate, as w	ell as	under	lying
cause						
	se objectives					
	se content			-	-	-
SNo		pic		L	Т	P
1.	Overview of the Global Atmosphe			4		
	Density, Pressure, Temperature, Chemical Constituents, Mixing					
	Ratio, Number Density, and Partia	ll Pressure; and B	arometric Law			
2.	Origin of the Earth's Atmosphere:			1		
	Formation and Evolution of the Ea	rth System				
		5				
3.	Sun-Earth Relationships:			1		
	Rotation of Earth and time zon	nes, Revolution	around the Sun,			
	Seasons, Cycle of Sun's declination					
4.	Atmospheric Models:			2		
	Box model, Column Model, Proces	sses governing th	e chemical state of			
	the atmosphere, Spatial and tempo	0 0				
5.	Atmospheric Transport:	*		3		
	Geostrophic flow; The General C	Circulation; Vertic	cal Transport; and			
	Turbulence; Coriolis Force, Horiz					
	Friction Force concepts; Buoy					
	Environmental Lapse Rate.	5	1 /			
	1					
6.	Case Study I:			2		
	Emissions, transport, and back-tra	jectory analysis				
	Radiation Budget of the Atmosphe			3		
1.						
7.	Solar Zenith angle; Wavelength an		ackbody radiation:			

	absorption and extinction			
8.	Air Quality Modeling and Chemical Kinetics: Rate law; fundamentals of reaction kinetics; rate constant	3		
9.	9. Atmospheric Chemistry: Sources, and Sinks of Trace Gases, Hydroxyl Radical, Reactive Nitrogen, Carbon, and Sulfur Compounds; radical (hydroxyl, peroxy, and nitrate) chemistry			
10.	Tropospheric Ozone: Formation, chemistry and distribution	3		
11.	Case Study II: Measurements and analysis of reactive nitrogen compounds in the troposphere; their ratioing to examine tropospheric ozone in air masses	2		
12.	Stratospheric Ozone and the Ozone Hole: Anthropogenic perturbations to stratospheric ozone; vertical transport of long lived chemical compounds (e.g. CFCs), and their subsequent interactions in the Stratosphere; along with the mathematical development associated with the Chapman Cycle	2		
	Total	28		
• • • Lea	Aluation criteria Minor test : 30% Quiz: 10% Assignment: 10% Major test : 50% arning outcomes the student should to be able to eurlain should to be able to eurlain should			
pro atm Ste che and fro tra: wil	ter taking this course the student should to be able to explain chemic becesses that are fundamental for the emissions, transport, transformat hospheric pollutants. The importance of electromagnetic radiation laws (fan-Boltzmann, Kirchhoff's) will be examined in relation to earth's radiative emistry, and climate. Sources and sinks of gases and particles of importance d climate will be examined. The interplay of atmospheric gases and particle m a chemical and meteorological perspective. Basic chemical and phy insformation of gases and particles as well as to their transport and fate in 1 be examined.	tion a (Planc) ve bala e for e s will sical l	nd fate k's, Wie nce, pho nvironm be explo aws to	e of en's, oto- nent ored the
	dagogical approach			
Ree	aterials quired text Introduction to Atmospheric Chemistry by Daniel J. Jacob, 1999. Atmospheric Science: An Introductory Survey by Wallace, J.M., and F edition) Meteorology Today by Ahrens, C. Donald (9th edition)	P. V. I	Hobbs (2	2nd

5. Case Study Discussions

Additional information (if any) Student responsibilities

Attendance, feedback, discipline, guest faculty etc.