Course title: Energy and Environment						
Course code: NRE 183	No. of credits: 3	L-T-P: 38-4-0	Learning hours: 42			
Pre-requisite course code and title (if any): A good knowledge of Physics and Mathematics is						
expected from each of the student attending the course work. Students should have knowledge						
of Mathematics upto 10+2 level						
Department: Department of Natural Resources						
Course coordinator: Dr Vin	inator: Dr Vinay K Tyagi Course instructor: Dr Vinay K Tyagi		t or: Dr Vinay K Tyagi			
Contact details:						
Course type: Elective	se type: Elective Course offered in: Semester 3		in: Semester 3			

Course Description

The course will provide the student a fair understanding of various energy resources, energy situation, energy production, utilization and the impact on environment, environment protection techniques/devices to protect the environment due to pollution arising out of use of various energy resources, global warming and climate change and the mitigation measures. Further the student will have a broad view of energy and environment policy of India.

Course objectives

- 1. To explain the importance of conventional energy in the overall infrastructure of the country
- 2. To examine the status of conventional energy infrastructure vis-a-vis the projected economic growth
- 3. To assess the environmental impacts of use of conventional energy
- 4. To impart basic knowledge about methods/processes involved during the entire fuel chain of every conventional energy resource
- 5. To bring out the technoeconomic aspects of conventional energy utilisation

Course content						
SNo	Topic		T	P		
1.	Introduction		1			
	SI units, energy resources & classification, forms of energy,					
	transformation of energy from one form to another, end uses of					
	energy, energy scenario of world & in India, organization of energy					
	sector in India, forms of pollution, energy use and environment					
	linkage, acid rain, smog, haze, global warming, climate change					
2.	Conventional Energy	10	1			
	Coal and lignite: Formation, reserves, mining, production and					
	sectoral consumption, transportation, future demand, imports,					
	quality of Indian coals, coal uses					
	Hydrocarbons: Formation, reserves, production, refining, various					
	petroleum products, sectoral consumption, movement of petroleum					
	products, demand and imports, basic properties, uses					
	Nuclear energy: Uranium resources, radioactivity, nuclear fission					
	and fusion, nuclear reactors, nuclear fuel cycle, future of nuclear					
	power and environmental issues					
3.	New & Renewable Energy	10	1	•		
	Solar thermal energy; solar photovoltaic; hydroelectricity; tidal					
	power, wind energy, wave energy, geothermal energy, biofuels,					
	hydrogen, current potential, achievements and future prospects of					

	renewable energy in India and Environmental impacts			
4.	Environment protection techniques/devices		1	
	Safety health and environmental issues during handling,			
	storage, transportation and combustion of fuels, control of emission			
	of sulphur dioxide (SOx), oxides of nitrogen (NOx), particulate			
	matter, fluidized bed combustion, combined cycle power			
	generation			
	Energy use and global climate change, GHG emissions, carbon			
	sequestration			
5.	Energy and Environment Policy of India: Introduction	2		
	Total	38	4	

Evaluation criteria

2 minor tests: 15% each
Term paper presentation: 20%
Major test: 50%

Learning outcomes

- 1. Current status of conventional energy scenario of the country and global scenario
- 2. Methods/processes/technologies for exploration, extraction and utilisation of conventional energy resources
- 3. Demand, indigenous supply and imports, pricing and taxation of various conventional energy sources
- 4. Role of public and private sectors in development of conventional energy infrastructure
- 5. Technoeconomic and environmental merits and demerits of conventional energy sources
- 6. 6. R&D programmes in the conventional energy sector

Pedagogical approach

Materials

Required text

- 1. Boyle G. (2004) Renewable Energy: Power for a Sustainable Future, Oxford University Press, UK.
- 2. Kishore V.V.N. (2008) Renewable Energy Engineering and Technology, Principles and Practice, The Energy and Resources Institute, New Delhi.

Suggested readings

- 1. Boyle G., Everett B. and Ramage J. (Editors) (2003) *Energy Systems and Sustainability: Power for a Sustainable Future*, Oxford University Press, UK.
- 2. Kishore V.V.N. (Edited) (2008) Renewable Energy Engineering and Technology–A Knowledge Compendium, Published by TERI Press, printed at Rajkamal Electric Press, New Delhi, pp 925.
- 3. Ristinen R.A. and Kraushaar J.J. (2006) *Energy and the Environment*, John Wiley & Sons, Inc., USA.

Case studies

Websites

Journals

Biomass and Bioenergy

- 2. International Journal of Energy and Environment

3. Renewable Energy Additional information (if any)

Student responsibilitiesAttendance, feedback, discipline, guest faculty etc