Cour	se title: Principles of GIS and	d GNSS						
Cour	se code: NRG 176	No. of credits: 4 L-7		L-T-P: 38-2-32	Learning hours: 5		56	
	equisite course code and tit			I				
-	artment: Department of Natu							
	se coordinator: Dr Vinay Sir	nha C	our	se instructor: Dr	Vinay S	Sinha		
	act details:			se offered in: Ser	- a a harr 1	1		
	se type: Core se Description		our	se offered in: Ser	nester	L		
It int datab	pases, cartography, Overvi patial metadata.							
Cour	se objectives							
1. T	o provide a firm understand nd GNSS	ling of the concep	otua	l and technical ur	dersta	nding	of GI	S
2. T	o prepare students for spatia	al data analysis a	nd r	nodelling				
	se content					1	1	
Th#		Topic				L	Т	P
1	Basic concepts about spatia definition of GIS, Compute mapping Vs GIS mapping.	er Aided Cartogra		T • .	•	2		
2	Geometrical feature and real word Pictures, Variables- Points, Lines and Areas and applications of GIS in various sectors (a case study approach)			2				
3	Basic Objectives and Com software and management; phenomena.					2		
4	Introduction to GIS software; Overview of open source GIS Mercator, Polyconic, Lambert, Orthographic and UTM				2			
5	Information organization a Tabular databases and Adv			sic file structures,		2		
6	Spatial and Non-spatial dat Vector data model, Object	-				2		
7	Raster data model; Hybrid Comparative analysis of sp		se V	's Object orientati	on.	2		
8	GIS data Requirement, var GIS data, Methods of data				of	2		

	associated errors; Conversion from other digital Sources, Attribute data input and management		
9	Different kinds of geospatial data, Sources of errors in GIS database: Errors through processing, Errors associated with overlay issues of features, Detecting and evaluating errors, Edge matching		
10	Introduction of Global Navigation Satellite System, Satellite constellation & Segments (Control, Space & User) GNSS signals and data, Geopositioning – Basic concepts (GPS, NAVSTAR, GLONASS and IRNSS /NAVIK)		
11	Introduction to Hand held GPS receivers; Initial setting & Creating codes and attribute table in receiver		
12	GNSS Positioning Types-Absolute positioning, Differential positioning	2	
13	GNSS performance and policy (Accuracy, integrity, SPS, PPS DoD & DoT policy, anti-spoof); Positioning Errors: Multi path, Ionosphere, Troposphere, Satellite Geometry, Satellite signals and its strength,	2	
14	Introduction to DGPS, wide area augmentation system (WAAS)	2	
15	Nature of geographic data-Types of uncertainty in a GIS; Data quality parameters: Positional accuracy, Attribute accuracy, Logical consistency, Completeness lineage,	2	
16	Topological relationships; Creation of topology and error correction;	2	
17	Attribute data query, SQL, Logical, Boolean, Arithmetical operation and function,		
18	Feature base operation – buffer, eliminate, dissolve		
19	Layer based overlay analysis: point to polygon, line to polygon, clip, erase, split, identity, union and intersection, Distance measurement	3	
20	Raster data structure, Local operations, Neighbourhood operations, Zonal operations		
Exp #	PRACTICALS		
1	Lab 1. Analog to Digital conversion -Scanning methods		
2	Lab 2. Introduction to software		2
3	Lab 3 Map Rectification, Define projection and Reprojection.		2

Evaluation criteria							
20	Lab 14. Layout generation and report Total	38	2	2 32			
19	Lab13. Map algebra / Math in Raster data						
18	Lab12. Creation of Blank Grid/Raster			2			
17	Lab 11. Spatial and Attribute query and Analysis			2			
16	Lab 10. Proximity Analysis			2			
15	Lab 9. Clipping, Intersection and Union			2			
14	Lab 8. Dissolving and Merging						
13	Lab 20. Image rectification using GPS coordinate data			2			
12	Lab 19. Post processing of the GPS data			2			
11	Lab 18. GPS data collection in DGPS mode						
10	Lab 17. Point / Line / Area data collection using GPS and measurements			2			
9	Lab 16. Point data collection using GPS with different datum			2			
8	Lab 15. Introduction to GPS receiver and initial setting & Creating codes and attribute table in receiver			2			
7	Lab 7. Data collection and Integration, Non-spatial data attachment working with tables			2			
6	Lab 6. Data editing-Removal of errors -Overshoot & Undershoot, Snapping, Topology Creation			2			
5	Lab 5. Digital database creation -Point features, Line features, Polygon features			2			
4	Lab4: Vector Transformation – Affine and Polynomial, co-ordinate definition. Map Bound.			2			

• Test 1: Written test [at the end of Th# 9 and Exp# 7] 10%

• Test 2: Written test [at the end of Th# 14 and Exp# No 13] 10%

Practical: Laboratory + Written test [at the end of practical, full experiment 1-20] -- 40%

• Test 4: Written test [at the end of the semester, full syllabus] -- 40%

Learning outcomes

Upon completion of this course, student will be able to:

- 1. Create and understand database in spatial platform for analysis and modeling for various applications [test -1]
- 2. Conduct the GNSS based survey and mapping under variety of planning and management applications [test-2]
- 3. Capable to understand the use of spatial tools & techniques for analysis and modeling of the spatial data over various natural and human resource mapping, monitoring and management [Practical and test-3]

Pedagogical approach:

The course will be delivered through class lectures, lab exercise and tutorials.

Materials

Required text

- 1. Burrough P.A. and McDonnell R.A. (1998) Principles of Geographical Information Systems, Oxford University Press, Oxford,
- 2. Chang K. (2007) Introduction to Geographic Information System, 4th Edition, McGraw Hill.
- 3. Lo C. P and Yeung A. K. W. (2009) Concepts and Techniques of Geographic Information Systems, 2nd Edition, New Jersey, Pearson Prentice Hall
- 4. Verbyla D. L. (2002) Practical GIS Analysis, London and New York, Taylor and Francis.
- 5. Berry J.K. (1993) Beyond Mapping: Concepts, Algorithms and Issues in GIS, Fort Collins, CO, GIS World Books.
- 6. Bolstad P. (2005) GIS Fundamentals: A First Text on Geographic Information Systems, Second Edition, White Bear Lake, MN, Eider Press
- 7. Kaplan E. D. and Hegarty C J (2006) Understanding GPS Principles and Applications, Second Edition, ARTECH House INC. Norwood.
- 8. Paul D. Groves (2013) Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd edition, Artech House, Boston/London

Suggested readings

- 1. Elangovan K. (2006) GIS: Fundamentals, Applications and Implementations, New India Publishing Agency, New Delhi.
- 2. Heywood I., Cornelius S. and Carver S. (2006) An Introduction to Geographical Information Systems, Prentice Hall, 3rd Edition.
- 3. Longley P.A., Goodchild M.F., Maguire D.J. and Rhind D.W. (2005) Geographic Information Systems and Science, Chichester, Wiley, 2nd Edition.
- 4. Maguire D.J., Goodchild M.F. and Rhind D.W. (1997) Geographic Information Systems: Principles and Applications, Longman Scientific and Technical, Harlow.
- 5. Ott T. and Swiaczny F. (2001) Time-integrative GIS, Management and Analysis of Spatiotemporal Data, Berlin/Heidelberg/New York, Springer.
- 6. Thurston J., Poiker T.K. and Moore J.P. (2003) Integrated Geospatial Technologies: A Guide to GPS, GIS and Data Logging, Hoboken, New Jersey, Wiley.
- 7. Tomlinson R.F. (2005) Thinking about GIS: Geographic Information System Planning for Managers, ESRI Press.
- 8. Wise S. (2002) GIS Basics, London, Taylor & Francis.

- 9. Worboys M. and Duckham M. (2004) GIS: A Computing Perspective, Boca Raton, CRC Press.
- Case studies
- Websites

Journals

- 1. Asian Journal of Geoinformatics
- 2. Geocarto International
- 3. International Journal of Goeinformatics
- 4. International Journal of Remote Sensing
- 5. ISPRS Journal of Photogrammetry and Remote Sensing
- 6. Journal of Indian Society of Remote Sensing
- 7. Remote Sensing of Environment

Additional information (if any)

Magazines

- 1. Coordinates
- 2. Geospatial today
- 3. GIM International
- 4. GIS World
- 5. GIS@development
- 6. GPS World

Student responsibilities

The students are expected to submit assignments in time and come prepared with readings when provided.

Course reviewer:

- Prof. P K Joshi, JNU
- Prof. J. K. Garg, Guru Gobind Singh Indraprastha University