Course title: Mathematical Methods for Economics								
Course of	Dete: MPE 113 No. of credits: 4 L.T.P. 42-14-0 Learn	ing h	ourse	56				
Pre-requisite course code and title (if any). None However knowledge of Mathematics at the level of 10±2 is								
required								
Denartm	ent. Department of Policy Studies							
Course of	Andinator: Soumendu Sarkar							
Course dotailst soumendu sarkar								
Course type: Core								
Course description:								
Course description:								
The use of optimization techniques in economics can be motivated by Robbins (1932) definition of economics as								
the science which studies human behaviour as a relationship between ends and scarce means which have alternative								
uses . I m	d ontimization techniques used in modern accompanies. However, Lincer Algebra and Deal A	Junua		01				
important	to optimization techniques used in modern economics. However, Linear Algebra and Real A	inarys.	is are					
important topics in their own right, and many results thereof are used in different branches of economics. Besides								
equipping the student with economists essential toolbox, this course emphasises on understanding important								
mathematical properties that motivate the underlying assumptions of economic models.								
	Djecuves:							
	Inderstanding major concepts of Linear Algebra and Real Analysis.							
2.	o appreciate the criticality of the role of mathematical assumptions in economic modelling.							
3. 1	o provide foundations of major techniques to solve optimization problems in economics.							
4.	to familiarise students with logical arguments and proofs.							
Course co	ontents	T -	-	-				
Module	Topic	L	Т	P				
	Group 1							
Ι	Preliminaries	2	0	0				
	(a) Symbolic logic:							
	(b) Necessary vs. sufficient conditions:							
	(a) Methods of proof							
	(c) Methods of proof							
	Group 2							
II	Linear Algebra	8	3	0				
	(a) Vectors; Vector Spaces; Linear Dependence; Rank and Basis; Inner Product and							
	Norm.							
	(b) Matrices; Basic operations; Rank of a matrix; Inverse of a matrix.							
	(c) Systems of Linear Equations; Existence, uniqueness and calculation of solutions;							
	Determinants; Matrix Inversion; Cramer's Rule.							
	(d) Eigenvalues and Eigenvectors; Relationship with Trace and Determinant; Symmetric							
	matrices; Spectral Decomposition; Quadratic Forms and their Definiteness							
	Group 3							
III	Real Analysis	6	3	0				
	(a) Real Space;							
	(b)Sequence and Limit; Sequence and Limit in Vector Space;							
	(c) Open Set; Closed Set; Compact Set in Vector Space; Bolzano-Weierstrass Theorem;							
	(d) Continuous functions; Weierstrass' Theorem.							
IV	Differential Calculus	8	3	0				
	(a) Single variable case: Slope of a function and its derivative; Continuity and							
	Differentiability; approximation by differential; higher order derivatives.							
	(b) Multiple variables case: Partials; Total Derivative; higher order derivatives.							
	(c)Vector-valued functions; Jacobian Matrix.							
	(d) Composite functions; Chain Rule. Inverse function and its derivative.							
	(e) Implicit function; Implicit functions of several variables; Systems of Implicit							
	Functions; Solutions of Systems of Implicit Functions: the Implicit Function Theorem.							
V	Convex Analysis	4	1	0				
	Convex Sets; Intermediate Value Theorem; Mean Value Theorem; Taylor's Expansion.							
	Concave functions: Concave functions on convex sets: differentiable functions on	1	1					

		1	r			
	convex sets and concavity. Quasi-concave functions on convex sets; differentiable					
	functions on convex sets and quasi-concavity.					
	Group 4	-		_		
VI	Unconstrained Optimization	2	1	0		
	(a)Local and Global maximum; Existence and uniqueness;					
	(b)Necessary and sufficient conditions for local maximum;					
	(c) Necessary and sufficient conditions for global maximum					
VII	Constrained Optimization	8	3	0		
	(a) Optimization with equality constraints; Necessary and sufficient conditions for					
	constrained local maximum; sufficient conditions for constrained global maximum.					
	(b) Optimization with inequality constraints; saddle point; constrained global maximum					
	and saddle points; Kuhn-Tucker Conditions and Saddle Points; Sufficient conditions for					
	constrained global maximum; Necessary and sufficient conditions for constrained local					
	maximum.					
VIII	Applications	4	0	0		
	(a) Linear Programming					
	(b) Integration; differential equations; Optimal Control and Dynamic Programming					
	Problems			_		
	Total	42	14	0		
Eval	uation criteria:					
Test	1: Homework Assignments: 30%					
Test	2: Written Examination [Group 2] 20%					
Test	3: Written Examination [Group 3] 30%					
Test	4: Written Examination [Group 4] 20%.					
Lear	ning outcomes:					
At th	e end of this course, students will be able to					
1. Master the essential concepts and techniques of Linear Algebra, Real Analysis and Optimization and apply						
1	hem to important economic problems [Tests 1-4]					
2.	Understand and appreciate the motivation of essential mathematical assumptions made in econom	nic mo	dellir	ng		
	Test 4]					
Peda	gogical approach:					
Class	sroom teaching, interaction and quizzes; tutorials to discuss problem sets and economic application	ons				
Mat	erials:					
Prin	ary Textbook:					
1. Simon, C.P. and Blume, L., 1994. Mathematics for economists, New York: Norton.						
Add	tional Textbooks:					
	1. Sydsæter, K., Hammond, P., Seierstad, A. and Strom, A., 2008. Further mathematics for economic					
	analysis. Pearson education.					
	2. Sydsæter, K. and Hammond, P., 2008. <i>Essential mathematics for economic analysis</i> . Pearson Education.					
	. Sundaram, R.K., 1996. A first course in optimization theory. Cambridge university press.					
4	4. Vohra, R.V., 2004. Advanced mathematical economics. Routledge.	•.	D			
	5. Lucas, R.E. and Stokey, N.L., 1989. <i>Recursive methods in dynamic economics</i> , Harvard Univ	versity	Pres	S		
n (5. Alpha C. Chiang, 1992. Elements of dynamic optimization. McGraw-Hill.					
Prep	aratory Textbook:					
A 1 1	1. Unlang, A.C., 1984. Fundamental methods of mathematical economics, McGraw-Hill.					
Add	tional information (if any):					
Lecture notes and problem sets will be provided.						
Student responsibilities: Attendance, reedback, discipline: as per university rules.						
Cou	rse reviewers:					
	1. Tridip Ray, Professor, Economics and Planning Unit, Indian Statistical Institute, New D	elhi				

I'ridip Ray, Protessor, Economics and Planning Unit, Indian Statistical Institute, New Delhi
Subrata Guha, Associate Professor, Centre for Economic Studies and Planning, Jawaharlal Nehru University, New Delhi

Prepared by: Soumendu Sarkar