Course title: Water and Wastewater Treatment Processes and Design									
Course co	de: NRE 174 No. of credits: 4 L	L-T-P: 42-14-0	Learn	ing ho	urs: 5	6			
Pre-requisite course code and title (if any): NRE 142 Water Quality management (with atleast									
`B' grade)									
Department: Energy and Environment									
Course coordinator: Course instructor: Dr Akash Sondhi									
Contact details: akash.sondhi@terisas.ac.in									
Course type: Elective Course offered in: Semester 3									
Course Description									
The course is meant for M.Sc. opting for a specialized course in water treatment technologies.									
Ine course will elucidate the latest developments made in treatment technologies and their application in diverse pollution sources including industries. The course is breadly divided into									
application in diverse pollution sources including industries. The course is broadly divided into three parts. In the first part, fundamentals of fluid mechanics are discussed which is vital for									
unce parts. In the first part, fundamentals of fund mechanics are discussed which is vital for understanding the motion of water, calculation of head losses, bydraulic profile diagram and									
design of numping systems. Design of treatment technology for criteria pollutants are explained									
in the second part. The current and suggested methods of industrial waste treatment are dealt in									
the third part. The course highlights negative effects of wastes disposed off into the									
environment, suitable methods for treating these wastes under Indian conditions and methods for									
waste redu	iction, recycling and reuse. Selected case	studies are chosen	to reinf	force ke	ey con	cepts			
and issues	. The course concludes with a brief dis	scussion on pollut	ion issu	ues in	small-	scale			
industries and industrial estate planning.									
Course of	ojectives								
1. Elucidate the latest developments in treatment technologies and their application in diverse									
pollution sources including industries									
2. To provide fundamentals of fluid mechanics and understanding of motion of water									
3. Design of treatment plants for various industries.									
Course content									
Module	Topic			L 12	Т	<u> </u>			
1.	Fluid mechanics and hydraulics	1 1.	1	12	6				
	water pressure; pressure-velocity-nead r	relationships; energ	y and						
	momentum equations; now in pipes;	equivalent pipe;	open						
	channel now; now measurement in pr	opes and open cha	hood						
	loss constants in open channels and pres	sure nines: nlant l	avout						
	and hydraulic profile	ssure pipes, plant i	ayout						
2	Design principles of physico-chemical tra	eatment units		12	6				
2.	Aeration-theory of gas transfer: design	n of cascade and	sprav	12	Ū				
	aerators.		~ F						
	Coagulation and flocculation-Design cr	riteria and principl	es of						
	hydraulic and mechanical flash mixers	and flocculators; d	esign						
	of clari-flocculator; concept of tapered	d velocity gradien	t and						
	sludge blanket clarifier.								
	Sedimentation-Analysis of discrete a	and flocculent pa	rticle						
	settling, concept and design of hi	igh rate sedimen	tation						
	techniques; design of tube settlers.								
	<i>Filtration</i> - Design of filter media for slo	w and rapid sand f	ilters:						

	backwash and sand bed expansion; hydraulic of filtration.					
	Specific treatment methods-Design of equalization and					
	neutralization tank; removal of oil and grease.					
3.	Design principals of biological treatment	6	2			
	Aerobic process-kinetics of biological growth; Design of					
	activated sludge process and its modifications; oxygen transfer					
	and design of aerators.					
	Anaerobic treatment-High rate anaerobic treatment processes;					
	sludge stabilization and design of anaerobic digesters.					
4.	Industrial wastewater treatment processes	12				
	Introduction-magnitude of industrial pollution, their					
	characteristics and impacts; selection procedure for physical,					
	chemical and biological methods of industrial wastewater					
	treatment					
	Case studies-Manufacturing process description; pollution					
	sources, waste reduction and treatment methods for industries-					
	pulp and paper, sugar, distillery, tannery, dairy, textile.					
	Planning-Small-scale industries and pollution issues, concept of					
	CETPs, planning of industrial estate, concept of zero discharge					
	Total	42	14			
Evaluation criteria						
 Test 1 	& 2: 40%					
Assignment: 10%						
 Test 3 	: 50%					
Learning outcomes						
• On completion of the course, students should be able to design treatment processes for						

• On completion of the course, students should be able to design treatment processes for various criteria pollutants, be able to decide suitable methods for treating these wastes under Indian conditions and methods for waste reduction, recycling and reuse of industrial wastewater.

Pedagogical approach

Materials

Required text

- 1. Birde G.S. and Birde J.S. (2004) *Water Supply and Sanitary Engineering*, 7th ed., New Delhi,DhanpatRai Publishing.
- 2. Chatterjee A.K. (2010) *Water Supply, Waste Disposal and Environmental Engineering,* 8th ed., New Delhi,Khanna Publisher.
- 3. Eckenfelder W. Jr. (1999) *Industrial Water Pollution Control*, 3rd ed., New York, McGraw-Hill.

Suggested readings

- 1. CPCB Publications (COINDS series for case studies).
- 2. Garg S.K. (2007) *Sewage Disposal and Air Pollution Engineering*, 20th ed, Vol. II, New Delhi,Khanna Publisher.
- 3. Garg S.K. (2007) Water Supply Engineering, 18th ed, Vol.I. New Delhi, Khanna Publisher.
- 4. McGhee T.J. and Steel E.W. (1991) Water Supply and Sewerage, New York, McGraw-Hill.
- 5. Metcalf and Eddy (2003) Wastewater Engineering: Treatment and Reuse, 4th ed. New

Delhi, Tata McGraw-Hill.

- 6. Nathanson J.A. (2009) *Basic Environmental Technology: Water Supply, Waste Management and Pollution Control,* 4th ed., New Delhi, PHI Learning.
- 7. Qasim S.R., Motley E.M. and Zhu G. (2000) *Water Works Engineering: Planning, Design and Operation,* New Jersey, Prentice Hall.

Journals

- 1. American Society of Civil Engineering, Environmental Engineering
- 2. Indian Water Works Association
- 3. Water Research
- 4. Water Science and Technology

Additional information (if any)

Student responsibilities

Attendance, feedback, discipline, guest faculty etc