Course title: Spatial Data Modeling and Applications								
Course co	ode: NRG 163 No. of credits: 4 L-T-P: 32-08-32	Lear	ning ł	ours	: 56			
Pre-requisite course code and title (if any): NRG 176 Principles of GIS and GPS								
Department: Natural Resources								
Course coordinator: Dr Vinay SinhaCourse instructor: Dr Vinay Sinha								
Contact details: sinhav@terisas.ac.in								
Course type: Core Course offered in: Semester 2								
Course Do	escription							
The cours	se covers fundamental aspects of spatial data modeling specif	fically	to enh	nance	the			
capability	of spatial modelling, spatial database analysis concept, desi	gn and	form	nat un	ıder			
different r	natural resource assessment planning and monitoring. It introdu	ices th	e part	icipan	it to			
the basic	concepts of Matrix & PCA, map algebra, decision making crite	ria, spa	itial a	nalysi	s of			
discrete a	and continuous datasets, geo-statistics, decision-making, confl	ict res	olutio	n. It a	also			
considers	Integration of non-spatial data and application developed base	ed on t		ncepts	s by			
soltware c	students, and locturers	ists, res	search	iers, p	ost-			
Course of	bioctives							
1 To int	roduce fundamental aspects of spatial data modeling							
1. To line	derstand the natural and social resource assessment inlanning ar	nd mon	itorin	σfor				
2. To una Nation	nal development process	ia mon		5101				
3. To cre	pate a firm basis for successful integration of natural / human res	ources	using	spatia	al			
model	lling in any field of application.	ourees	401118	opun				
Course co	ontent							
Module	Торіс		L	Т	Р			
1	Introduction to geospatial modeling and interpretation		2					
1	Raster data and Matrix application: Addition, subtraction,		n					
	multiplication, Identity and Inverse for Spatial analysis concep	t;	Z					
2	Raster and Vector data Geometry and Intensity transformation		с С					
3	using Principle Component Analysis: Eigenvectors and Eigen va	alues	2					
4	Applications of GIS models, case exercise		2	2				
5	Geospatial models – types and Modelling: Descriptive, prescrip	tive	2					
5	and predictive; Normalization, level of measurement		2					
6	Spatial analysis concept: Distance, Adjacency, Interaction and		2					
	neighbourhood							
7	Introduction to modeling & flowcharting, Map algebra-operato	rs &	2					
	operations, Functional operations, Spatial interaction models		_					
	Point Analysis: Coordinate, Distance – Nearest Neighbour Dista	ince,		-				
8	Density – Quadrant and other methods, Clustering - K- mean,		2	2				
Ũ								
	Thiessen and Buffer	100						
9	Thiessen and Buffer Address Geocoding, Optimum Routing Closest facilities, Resour	ce	2					
9	Thiessen and Buffer Address Geocoding, Optimum Routing Closest facilities, Resour Allocation, Network Analysis	ce	2					
9 10	Thiessen and Buffer Address Geocoding, Optimum Routing Closest facilities, Resour Allocation, Network Analysis Dynamic Segmentation: Route, Section, Events and its applicati	ce on.	2					
9 10 11	Thiessen and Buffer Address Geocoding, Optimum Routing Closest facilities, Resour Allocation, Network Analysis Dynamic Segmentation: Route, Section, Events and its applicati Local neighbourhood operation – Reclassification, filter, slope, Aspect curvature view shed	rce on.	2 2 2					

12	Spatial Interpolation and Geostatistics: Local and global methods, Gravity model, Regression model, Pattern analysis, Moran's I, Cluster analysis, Trend surface Analysis,	2	2				
13	Thiessen polygon, Density estimation, Inverse Distance Weight (IDW), Thin – plate Spline,	2					
14	Kriging – ordinary and Universal, Semivariogram; Spatial Autocorrelation	2	2				
15	Single criteria vs. Multiple criteria, Decision-making, Conflict resolution and Prescriptive modeling, Model verification	2					
16	Spatial decision support system and thematic areas (application of MCDM/AHP in spatial modeling)	2					
Exp	PRACTICALS						
1	Lab 1. Performing various actions over table			2			
2	Lab 2. Merging of tables by using primary key			2			
3	Lab 3. Maintaining database			2			
4	Lab 4. Point pattern analysis			2			
5	Lab 5. Terrain Analysis			2			
6	Lab 6. Hydrological modelling			4			
7	Lab 7. Geostatistics (Surface generation)			6			
8	Lab 8. Cluster Analysis			4			
9	Lab 9. Site suitability analysis			4			
10	Lab 10. Network analysis			2			
11	Lab 11. Dynamic segmentation			4			
	lotai	32	08	3 2			
Evaluation criteria							
• Test1: 10% [module no.s 1to 5] [5-6 week]							
 Test2: 10% [module no.s 7to 11] [10-12 week] 							
Practical: 40% [Module no. 1-15] [End Semester] A0% [Experiment no. 1-15] [End Semester]							
Learning outcomes							
1. Equip with analysis, description and modeling of geospatial data.							

2. The practical applications of software tools, underlying theory, and the correct application of these tools to analyze and model data

Pedagogical approach

The course will be delivered through class lectures, lab exercise and tutorials.

Materials

Required text

- 1. O' Sullivan D. and Unwin D. (2003) Geographical Information Analysis, John Wiley and Sons.
- 2. Verbyla D. L. (2002) Practical GIS Analysis, London and New York, Taylor and Francis.
- 3. Burrough P.A. and McDonnell R.A. (1998) Principles of Geographical Information Systems, Oxford University Press, Oxford, 327 pp.
- 4. Longley P.A., Goodchild M.F., Maguire D.J. and Rhind D.W. (2005) Geographic Information Systems and Science, Chichester, Wiley, 2nd edition.
- 5. Longley P.A., Goodchild M.F., Maguire D.J. and Rhind D.W. (2005) Geographic Information Systems and Science, Chichester, Wiley, 2nd edition.

Suggested readings

- 1. Andrew S. (2002) Environmental Modeling with GIS and Remote Sensing, Taylor and Francis.
- 2. David W. and Mark G. (2002) Spatial Technology and Archaeology, The Archaeological Application of GIS. London, New York, Taylor & Francis.
- 3. Goodrich M. (2000) Data Structures and Algorithms in Java, 2nd Edition Wiley.
- 4. Malczewski J. (1999) GIS and Multicriteria Decision Analysis, New York, John Wiley and Sons.
- 5. Michael W. and Duckham M. (2004) GIS: A Computing Perspective, Boca Raton, CRC Press, Asrar Ghassem Theory and Applications of Optical Remote Sensing New York, John Wiley and Sons.
- 6. Ott T. and Swiaczny F. (2001) Time-integrative GIS, Management and Analysis of Spatiotemporal Data, Berlin/Heidelberg/New York, Springer.
- 7. Steven M.D. and Clark J.A. (1990) Applications of Remote Sensing in Agriculture London Butterworths.
- 8. Johnson L. E (2009) Geographical Information System in Water Resource Engineering, Taylor and Francis.
- 9. Thurston J., Poiker T.K. and Moore J.P. (2003) Integrated Geospatial Technologies: A Guide to GPS, GIS, and Data Logging, Hoboken, New Jersey, Wiley.
- 10. Vincent R.K. (1997) Fundamentals of Geological and Environmental Remote Sensing New Jersey, Prentice Hall.

Case studies Websites

Journals

- 11. Advances in Water Resources
- 12. Agricultural and Forest Meteorology
- 13. Asian Journal of Geoinformatics
- 14. Ecological Modelling
- 15. International Journal of Geoinformatics
- 16. International Journal of Remote Sensing

Additional information (if any)

Magazines

- 1. Coordinates
- 2. GIM International
- 3. GIS World
- 4. GIS@development
- 5. Geospatial today
- 6. GPS World

Student responsibilities

Attendance, feedback, discipline, guest faculty etc

Course Reviewer:

- Prof M P Punia, Head & Sr Scientific Officers, Department of Remote Sensing, BIT, Mesra- Jaipur
- Prof P K Joshi, SES, JNU, New Delhi