Course title: Molecular Plant Physiology and Metabolism								
Course code: BBP 116	No. of credits: 2	L-T-P: 30-0-0	Learning hours: 30					
Pre-requisite course code and title (if any): Science graduate								
Department: Department of Biotechnology								
Course coordinator: Dr. Shashi Bhushan Tripathi		Course instructor: Dr. Shashi Bhushan Tripathi						
Contact details: shashi.tri	pathi@terisas.ac.in							
Course type: Elective		Course offered in: Semester 2						

Course description:

This course is designed for the students who have opted for Plant Biotechnology as the stream of specialization in the M.Sc. Biotechnology Programme. The course aims to provide a comprehensive knowledge of molecular plant physiology. The main topics include photomorphogenesis, hormones, water relations, photosynthesis and stress physiology.

Course objectives:

- 1. To provide a foundational understanding of key plant physiological processes.
- 2. To provide knowledge of molecular mechanisms of plant metabolism and development.
- 3. Knowledge of plant stress physiology and tolerance mechanisms.
- 4. Familiarity with secondary plant metabolites.

Course contents

Module	Topic	L	T	P
	Photomorphogenesis: Role of light in growth and development, Circadian rhythms, Phytochrome, Cryptochrome and Phototropins	4	0	0
	Phytohormones: Biosynthesis, mode and mechanism of action, biological functions, perception and signaling (Auxins, Cytokinins, Gibberellins, Ethylene, Abscisic Acid, Brassinosteroids), Polyamine, Salicylic acid and Jasmonic acid	6	0	0
	Physiology of plant development and flowering: Embryogenesis, apical, basal & radial patterning; Developmental control of root and shoot apical meristem; Molecular mechanism of floral induction and development	7	0	0
	Plant nutrients: Uptake and utilization, Solute transport, Plant water relationships, hydroponics	2	0	0
	Physiology of biotic and abiotic stress, Molecular plant-pathogen interactions	3	0	0
	Photosynthesis (C ₃ , C ₄ and CAM), photorespiration	3	0	0
	Metabolism of secondary metabolites in plants, Phenolics, Terpenoids and Alkaloids, biochemical and physiological significance	3	0	0

Biological N ₂ fixation, Plant growth promoting Rhizobacteria, Amino acid metabolism, Urea cycle		0	0
Total	30	0	0

Evaluation criteria:

- 1. Minor test 1- (Module 1-3) 30%
- 2. Minor test 2- (Module 3-5) 30%
- 3. Major test (end semester) (Modules 5-9) 40%

Learning outcomes:

- 1. An understanding of photomorphogenesis and plant hormones (Minor test 1)
- 2. An understanding of floral induction and water relations and stress tolerance mechanisms (Minor test 1 and Minor test 2)
- 3. An understanding of electron transport, secondary metabolites, and nitrogen metabolism (Minor test 2 and Major test)
- 4. An ability of making hypotheses related to plant metabolism and development (Minor test 1, Minor test 2 and Major exam)

Pedagogical Approach:

- 1. Classroom lectures and discussions.
- 2. Case studies and examples from original research articles.

Skill Set:

- 1. Developing and screening mutants with novel traits.
- 2. Ability to develop strategies for genetic improvement of crops having climate resilience.

Employability:

- 1. Academic and research organisations
- 2. Tissue culture facilities and horticulture companies
- 3. Agri-biotechnology and seed companies
- 4. Pharmaceutical and drug research companies
- 5.

Materials:

Suggested Readings

- 1. Plant Physiology, Sixth Edition" by Lincoln Taiz and Eduardo Zeiger
- 2. Biochemistry & Molecular Biology of Plants by Bob Buchanan, Gruissen W and Jones R L

Additional information (if any):

Student responsibilities:

- 1. Class attendance.
- 2. Study of reading materials as specified by course instructor
- 3. Self-study

Course reviewers:

- 1. Dr. B. P. Shaw, Scientist G, Institute of Life Sciences, Bhubaneswar, Odisha
- 2. Dr. Santan Barthwal, Scientist F, Forest Research Institute, Dehradun, Uttarakhand