Course title: Environmental Chemistry and Microbiology						
Course code: NRE 131	No. of credits: 3	L-T-P: 35-10-0	Learning hours: 45			
Pre-requisite course code and title	(if any): Fundament	tal knowledge of basic	and applied chemistry			
Department: Natural and Applied Sciences						
Course coordinator:		Course instructor: Prof. V. Subramanian/Dr				
		Shashi Bhushan Tripathi/ Dr Chaithanya				
		Madhurantakam				
Contact details: subra42@gmail.co	m					
Course type: Core		Course offered in: Semester 1				

Course Description

The objective of the course is to provide detail understating of various aspects of chemistry, which are particularly valuable to environmental scientific practice and lay a foundation for understanding in specialized areas of environment management and practices. Students will get the training in analytic and conceptual skills required for environmental chemistry research.

Course objectives

- 1. To provide understating of various aspects of chemicals and chemistry, which are particularly valuable to environmental scientific practice
- 2. To lay a foundation for understanding in specialized areas of environment management and practices.

Course content

Module	Topic	L	T	P
1.	Atmosphere: Chemical composition of atmosphere- particles, ions and		2	
	radicals; formation of particulate matter; photochemical and chemical			
	reactions in the atmosphere; chemistry of greenhouse gases and ozone			
	layer depletion; gaseous transformations in the atmosphere and removal			
	mechanisms; photochemical smog; nuclear winter.	8		
2.	Lithosphere: Chemical composition of lithosphere; water and air in soil;			
	inorganic and organic components in soil; acid, base and ion-exchange			
	reaction in the soil; soil acidity, salinity and sodocity; effects of			
	ecological factors on the toxicity of soil; Bio-geochemical cycles.			
3.	Water: Basic concept of colloidal and quantitative chemistry. Oxidation-	9	3	
	reduction reactions and equations; gas laws, equilibrium and			
	Lechatelier's principle, activity and coefficients, variations in			
	equilibrium relationships, shifting chemical equilibrium, amphoteric			
	hydroxides, buffers and buffer index; solubility of salts, complex formation			
4.	Environmental Microbiology: Microorganisms and their association	4	1	
4.	with man, animals and plants; Extremophilic microorganisms, Microbial		1	
	metabolism; role of micro-organisms in environmental management.			
5.	Principles of environmental monitoring techniques-Neutron	6	2	
J.	Activation Analysis; calorimetric; Colourimetry; Atomic Absorption	U	2	
	Spectroscopy; Gas chromatography, HPLC, Ion exchange			
	Chromatography and Polarography. XRF, XRD.			
	Total	35	10	

Evaluation criteria

Minor Test 1: 15% (written test based on module 1 and 2)
Minor Test 2: 15% (written test based on module 3 and 4)

Assignment/Presentation: 20% (assignment on the applications of analytical instruments pertaining to environmental analysis)

Major Test: 50% (written test and viva covering entire syllabus)

Learning outcomes

- The students will learn basic chemical contents in the context of environmental studies (module 1 to 4)
- Students will understand the theory behind the analytical techniques (module 5)
- Students will learn the conceptual skills required for environmental chemistry research (module 1 to 5)
- Students will learn about the roles of microbes in managing environmental problems (module 4)

Pedagogical approach

Materials

Required text

- 1. Bailey R.A. (2002) Chemistry of the Environment, Academic Press, San Diego.
- 2. Masters G.M. (2004) *Introduction to Environmental Engineering and Science*, Second Edition, Pearson Education.

Suggested readings

- 1. Baird C. (1999) *Environmental Chemistry* (2nd edition), WH Freeman and Co.
- 2. Buell P. and Girard J. (2002) *Chemistry Fundamentals: An Environmental Perspective* (2nd edition), Jones & Bartlett Publishers.
- 3. Bunce N. (1991) Environmental Chemistry, Wuerz Publishing Ltd., Winnipeg, Canada.
- 4. Cunningham W.P. and Cunningham M.A. (2007) *Principles of Environmental Science: Inquiry and Applications*, Tata McGraw-Hill.
- 5. Harrison R.M. (1991) *Introductory Chemistry for the Environmental Sciences*, Cambridge University Press.
- 6. Harrison R.M. (Edited) (1999) *Understanding our Environment: An Introduction to Environmental Chemistry and Pollution*, Royal Society of Chemistry.
- 7. Miller G.T. (2001) Environmental Science, (eighth edition), Brooks/Cole.
- 8. Pepper I.L., Gerba C.P. and Brusseau M.L. (2006) *Environmental and Pollution Science*, Second edition, Academic Press.

Case studies

Websites

Journals

- 1. Applied Environmental Microbiology
- 2. Environmental Chemistry Letters
- 3. Journal of Environmental Chemistry and Ecotoxicology

Additional information (if any)

Student responsibilities

Attendance, feedback, discipline, guest faculty etc