Course title: Fundamentals of Physics								
Course code: NRG 102	No. of credits: 2		L-T-P: 20-10-0	Learning hours: 30				
Pre-requisite course code and title (if any): None								
Department: Department of Natural Resources								
Course coordinator: Dr Nithiyanandam Y		Course instructor: Dr Nithiyanandam Y						
Contact details : nithiyananda	m.y@terisas.ac.in							
Course type: Audit C			Course offered in: Semester 1					

Course description: The M.Sc. Geoinformatics course contains intense subjects, those require a basic knowledge in Physics for better understanding. Since, students undertake this course are from diverse backgrounds, a bridge course is required to fill this gap. Hence, a compulsory audit course of two credits is offered for students who have not done a course in Physics at 10+2 / bachelor's level.

Class objectives:

Develop an understanding of

- Selected fundamental concepts and principles in physics.
- How these concepts are used in practical applications.

Course content

S no	Topic		T	P
1	Measurement: The International system of Units, Changing units, length, time and mass; Motion along a straight line, two and three dimensions: Motion, position and displacement, average velocity and speed, instantaneous velocity and speed, acceleration, constant and free fall accelerations, momentum, projectile motion, circular motion, and relative motion.	2	1	0
2	Force and motion: Newtonian mechanics, Newton's first law, force, mass, Newton's second law, Newton's third law, friction, drag force.		1	0
3	Energy: what is energy? Kinetic energy, Work and kinetic energy, work done by the gravitational and general variable forces, and power; Potential energy, work and potential energy, determining potential energy values, conservation of energy.		1	0
4	Gravitation: Newton's law of gravitation, gravitation and the principle of superposition, gravitation near earth's surface, gravitation inside earth, gravitation potential energy, planets and satellites: Kepler's law, Satellites: orbits and energy, Einstein and gravitation.		1	0
5	Oscillation: simple harmonic oscillation, energy in simple harmonic motion, pendulums and circular motion, forced oscillation and resonance.		1	0

	fusion, cosmology, the cosmic background radiation, dark matter, the big bang.	2	1	Ü
8	Optics: Types of images, mirrors, interference, diffraction and polarization, Geometrical optics, dispersion of lights and optical instruments; Interference, diffraction and relativity. Energy from nucleus: Nuclear fission, nuclear reactor, thermonuclear	2	1	0
7	Electromagnetic waves: Maxwell's rainbow, the travelling electromagnetic wave, radiation pressure, reflection and refraction, total internal reflection, polarization by reflection;	4	2	0
6	Thermodynamics: Temperature, the zeroth law of thermodynamics, measuring temperature, thermal expansion, temperature and heat, first and second laws of thermodynamics, heat transfer mechanisms.		1	0
	Waves: types of wave, wavelength and frequency, the speed of a travelling wave, the wave equation, interference of waves, sound waves, travelling sound waves, intensity and sound level, the Doppler effect, supersonic speeds and shock waves.			

Evaluation criteria

Test 1: Written test: 15% (Module 1-3)
Test 2: Written test: 15% (Module 5-6)
Test 3: Written test: 40% (All modules)
Tutorials/assignments/Quizzes: 30% (All modules)

Learning outcomes:

Upon completion of this course, a student will be able to:

- Understand basic concepts and principles in different branch of physics like energy, thermodynamics, waves, and optics. [Test1, Test2, Tutorials/assignments/Quizzes]
- Realise the physics behind remote sensing thought in other courses.[Test3]

Pedagogical approach:

The course will be delivered through class lectures and tutorials.

Materials:

Books:

- 1. Christman, J. R. et al. (1997) Student's companion, Fundamentals of physics. Wiley.
- 2. Elachi, C. and van Zyl, J. J. (2006) *Introduction To The Physics and Techniques of Remote Sensing*. Wiley (Wiley Series in Remote Sensing and ImageProcessing).
- 3. Giambattista (2010). *Fundamentals Of Physics (sie)* McGraw-Hill Education (India) Pvt Limited.
- 4. Halliday, D., Resnick, R. and Walker, J. (2010) *Fundamentals of Physics*. John Wiley& Sons.

5. Rees, G. and Rees, W. G. (2012) *Physical Principles of Remote Sensing*. Cambridge University Press.

Additional information (if any)

Student responsibilities:

Attendance, Feedback, discipline, and timely submission of assignments.

Course Reviewers:

- Dr A.R.Prabhakaran, Associate professor of Physics, Pachaiyappa's College, University of Madras.
- Mr. Samudraiah, Former Deputy Director, Space Application Center, ISRO.