Course title: Geoinformatics for	atmosphere			
Course code: NRG 166	No. of credits: 3	L-T-P: 15-15-30	Learning hours: 45	
Pre-requisite course code and t	title (if any): Prior know	vledge of remote sens	ing and image processing	
Department: Department of Nat	tural and Applied Science	ces		
Course coordinator(s): Dr Anu Rani Sharma		Course instructor(s):		
Contact details:				
Course type: Elective		Course offered in: Semester 3		

Course description

The analysis of satellite measurements is critical in weather, climate studies, air quality etc. and transforming these observations into information is a current challenge in the developing world. This course deals with study of earth's atmosphere using data obtained from geostationary and polar orbiting satellites for meteorological and atmospheric science applications. This course will provide fundamental understanding about meteorological and atmospheric remote sensing as well as operational and future satellite missions. It will also deal with satellite image interpretation for identification of several weather phenomena, cloud types, aerosols etc. This course will further focus on various applications of satellite-derived parameters in meteorology, weather forecasting, air quality and climate monitoring.

Course objectives

- 1. To provide fundamental understanding about meteorological and atmospheric processes and its association with coupled human environment system.
- 2. To provide fundamental understanding about current and future satellite missions and weather forecasting.
- 3. To utilize satellite-based observations to monitor the environment, meteorological processes/phenomena and air quality.

Course content

Module	Торіс	L	T	P
1.	Fundamentals of Meteorological and atmospheric remote sensing The objective of this module is to gain familiarity with fundamentals of meteorological and atmospheric process through remote sensing. Following topics will be introduced in the module. Principles of Geoinformatics in Meteorology and Atmospheric sciences, Operational and future satellite missions for aerosols, clouds and trace gases (Terra/Aqua MODIS, Calipso, Cloudsat, AURA OMI, INSAT series etc.), Atmospheric Radiative transfer	4		
2.	Weather observation from space The objective of this module is to gain familiarity with satellite image interpretation for identification of various weather and atmospheric phenomena. Following topics will be introduced in the module.	3	4	

	Satellite Image interpretation (Visible, IR and Water vapor), Identification of			
	cloud type, water vapour, precipitation and atmospheric aerosols from			
	satellite imagery			
3.	Application of Satellite-derived parameters in Meteorology and	8	11	
	atmospheric sciences			
	The objective of this module is to gain familiarity with applications of			
	satellite derived parameters for various domains. Following topics will be			
	introduced in the module.			
	Atmospheric aerosols, trace gases and Air quality			
	Tropical cyclones (satellite tracking of cyclones, Dvorak's technique,			
	genesis and intensity), Cyclone warning system in India and dissemination			
	Fog phenomena			
	Atmosphere-Ocean interactions (El Nino, La Nina, ENSO, IOD			
	(Indian Ocean Dipole)			
	Indian summer monsoon—Onset, Active/Break cycles, retreat			
	Weather Forecasting and data assimilation			
	Lab			
Module	Торіс	L	T	P
1.	Introduction to SBDART and OPAC			2
	l i			2
2.	Satellite image interpretation for identifying cloud types, water vapor,			4
2.	Satellite image interpretation for identifying cloud types, water vapor, atmospheric aerosols, phenomena etc.			
2.				
	atmospheric aerosols, phenomena etc.			4
3.	atmospheric aerosols, phenomena etc. Introduction to Grid Analysis and Display System (GrADS)			4 9
3.	atmospheric aerosols, phenomena etc. Introduction to Grid Analysis and Display System (GrADS) Group project			4 9
3.	atmospheric aerosols, phenomena etc. Introduction to Grid Analysis and Display System (GrADS) Group project The objective of this module is to give hands on experience on tools and			4 9
3.	atmospheric aerosols, phenomena etc. Introduction to Grid Analysis and Display System (GrADS) Group project The objective of this module is to give hands on experience on tools and techniques learnt throughout the course.			4 9
3.	atmospheric aerosols, phenomena etc. Introduction to Grid Analysis and Display System (GrADS) Group project The objective of this module is to give hands on experience on tools and techniques learnt throughout the course. Students will undertake a group project on relevant topics. This			4 9
3.	atmospheric aerosols, phenomena etc. Introduction to Grid Analysis and Display System (GrADS) Group project The objective of this module is to give hands on experience on tools and techniques learnt throughout the course. Students will undertake a group project on relevant topics. This module will consist of requisite data download, data processing,			

Evaluation criteria

- Minor test 1: Written test (at the end of teaching of modules 1 and 2) -20%
- Minor test 2: Written test (at the end of teaching of modules3) 20%
- Major test: Written test [at the end of the semester, full syllabus] 30%
- Final presentation of group project (at the end of the semester) 30% Final presentation of group project will be evaluated on following basis—
- Novelty of the work (10%)
- Oral presentation skills and logical flow of information (10%)

Viva (10%)

Learning outcomes

By the end of the course, students will:

- command a critical understanding of physical principles behind meteorological and atmospheric remote sensing [Minor test 1 and Minor test 2]
- be able to interpret satellite images for various meteorological and atmospheric phenomena [Minor test 2]
- be able to interpret information from various satellite derived parameters [Major test]
- enhance their knowledge in satellite remote sensing and ready to use this to achieve their professional career goals

Pedagogical approach

Lectures, lab exercises, tutorials, visits

Course Reading Materials

- 1. Ahrens C.D. (1999) Meteorology today, Brooks/Cole, 6thedition.
- 2. Cobb A.B. (2003) Weather Observation Satellites, Rosen PublishingGroup.
- 3. Kelkar R.R. (2007) Satellite Meteorology, B S Publications, Hyderabad.
- 4. Kidder S.Q. and Vonder T.H. (1995) Satellite Meteorology—An Introduction, Haar Academic Press, New York
- 5. Wallace J.M and Hobbs P.V. (2006) Atmospheric Science; An introductory survey book, 2nd addition, Academic press, Elsevier

Advanced Reading Material

Advanced reading material will be provided to the students as and when required.

Recommended journals for reference

- 1. Advances in Meteorology
- 2. Atmospheric Environment
- 3. Climate Dynamics
- 4. Journal of Geophysical Research
- 5. Geophysical research letters

Additional information

Student responsibilities: Attendance, Feedback, discipline

Course Reviewers

Dr Shailesh Kumar Kharol

Air Quality Research Division | Direction recherche sur la qualité de l'air Environment and Climate Change Canada / Environnement et Changement climatique Canada 4905 Dufferin Street | 4905, rue Dufferin, Toronto, Canada

Dr. P. L. N. Raju

NE-SAC, ISRO, Shilong, Meghalaya