Course title: Digital Image Processing and Information Extraction						
Course code: NRG 172	No. of credits: 4	L-T-P: 34-10-32	Learning hours:60			
Pre-requisite course code and title (if any): NRG 178 Principles of remote sensing						
Department: Department of Natural and Applied Sciences						
Course coordinator: Prof. C	Chander Kumar Singh	Course instructor: Prof. Chander Kumar				
		Singh				

Contact details:

Course type: Core Course offered in: Semester 2

Course Description

This course will introduce fundamental technologies for digital image, compression, analysis, and processing. Students will gain understanding of algorithm, analytical tools, and practical Implementations of various digital image applications.

Course objectives

- 1. Fundamental technologies for digital image, compression, analysis, and processing
- 2. Gain understanding of algorithm, analytical tools, and practical implementations of various digital image applications

Course content

Module	Topic	L	T	P
_	Introduction to Digital Image Processing & Information	2		
1.	Extraction			
	Digital Data Formats; Image data storage and retrieval; Concepts	2		
2.	about digital image and its characteristics, Spectral, Spatial,			
2.	Radiometric and Temporal resolution,			
2	Types of image displays, Colour port and spectral band, B/W	2		
3.	image, Grey Image, True/Pseudo Image and Standard FCC.			
4	Radiometric and Geometric correction technique, Atmospheric	2	2	
4.	correction			
5.	Interpolation methods – linear and nor linear transformation for	4		
3.	geometric corrections. Spatial and Spectral interpolation			
	Look-up Tables (LUT) and Image display, Radiometric	2	2	
6.	enhancement techniques, Spatial profile and Spectral profile,			
	Spatial enhancement techniques,		_	
7.	Contrast stretching: Linear and non-linear methods.	2	2	
	Low pass filtering: Image smoothing, High pass filtering: Edge	4		
8.	enhancement and Edge detection, Gradient filters, Directional			
	and non-directional filtering.			
9.	Band ratio, NDVI, NDBI, VCI, EVI, SAVI, NDSI etc, TCA	2		
10.	Principal component analyses; Texture analysis	2	2	
	Concept of pattern recognition, Multi-spectral pattern	4		
11.	recognition; Spectral discrimination, Signature bank, Parametric and			
	Non-Parametric classifiers			
12.	Unsupervised classification methods, Supervised classification	2		
	techniques, Limitations of standard classifiers			
13.	Artificial intelligence, Fuzzy logic, Neural networks, Expert	2		
13.	systems			
14.	Accuracy Assessment: User and Producer accuracy, Kappa	2	2	
14.	accuracy.			

List of Experiment			
Lab 1. Study of the various contrast enhancement techniques			2
Lab 2. Haze and Noise reduction			2
Lab 3. Stacking, Mosaic and Subset of imagery, geometric and			4
radiometric correction Lab 4. Perform the various band ratio calculation			2
Lab 5. Low Pass Filter: Compression of the high frequency component and enhancement of the low frequency component			2
Lab 6. High Pass Filter: Compression of the low frequency component and enhancement of the high frequency component			2
Lab 7. Data compression techniques			1
Lab 8. Resolution merging			1
Lab 9. Supervised classification			3
Lab 10. Unsupervised classification			3
Lab 11 Knowledge base classification			6
Lab 12. Accuracy Assessment			3
Lab 13. Visualisation and presentation			1
Total Hours	34	10	32

Evaluation criteria

Minor test 1: 10% (Learning outcomes 1) [Module no.s 1, 2, 3, 4] % [End of 4thweek]
Minor test 2: 10% (Learning outcomes 1) [Module no.s 5, 6, 7, 8, 9] % [End of 10thweek]
Major test : 40% (Learning outcomes 1 and 2) [Module no.s 10, 11, 12, 13, 14] % [End of 10thweek]

16th week]

• Practical : 40% (Learning outcomes 1 and 2) [End of 16thweek]

Learning outcomes

- 1. Gain knowledge and practical experience in digital image processing [Module1-7]
- 2. Learn practical skills and analytical background for information extraction from digital data and its application [Module8-14]

Pedagogical approach

The course will be delivered through class lectures, lab exercise and tutorials.

Materials

Required text

[All Modules]

1. Jensen J.R. (2016) Introductory Digital Image Processing: Remote Sensing Perspective New Jersey, Prentice Hall.

[All Modules]

2. Umbaugh S.E. (2005) Computer Imaging: Digital Image Analysis and Processing.

[All Modules]

3. Schowengerdt R.A. (2007) Remote Sensing: Models and Methods for Image Processing, Academic Press, Elsevier

Suggested readings

- 1. Bart M.R. (2003) Front-End Vision and Multi-Scale Image Analysis.
- 2. Campbell J.B. (2002) Introduction to Remote Sensing, 3rd ed., The Guilford Press.
- 3. Lillesand T.M. Kiefer R.W. and Chipman J.W. (2003) Remote Sensing and Image Interpretation, 5th ed., Wiley.
- 4. William K.P. (1978) Digital Image Processing.

Case studies

Websites

Journals

- 1. International Journal of Applied Earth Observation and Geoinformation
- 2. ISPRS Journal of Photogrammetry and Remote Sensing
- 3. Remote Sensing of Environment

Additional information (if any)

Magazines

- 1. Coordinates
- 2. GIS World
- 3. GIS@development
- 4. Geospatial today

Student responsibilities

Attendance, feedback, discipline, guest lecture etc

Course Reviewer:

- Prof. Javed Mallick, King Khalid University, Saudi Arabia
- Prof. Saumitra Mukherjee, Jawaharlal Nehru University