Course code: NRG 181 No. of credits: 4 L-T-P: 29-13-36 Learning hours: 60

Pre-requisite course code and title (if any): NRG 172 & NRG 178

Department: Department of Natural and Applied Sciences

Course coordinator: Dr. Ayushi Vijhani Course instructor: Dr. B.K. Bhadra

Contact details: ayushi.vijhani@terisas.ac.in

Course type: Core Course offered in: Third semester

Course Description:

This course will provide an opportunity to understand and work with advanced developments in Remote Sensing and covers a wide range of remote sensing data interpretation and processing techniques.

Course objectives:

To teach basics of Thermal, Hyperspectral, Microwave and UAV remote sensing, and to inculcate practical skill for processing advance remote sensing datasets for various applications including natural resources management.

Course content:

Module	Topic	L	T	P
1.	Thermal remote sensing Introduction: Laws and definitions –Thermal emission characteristics Physics behind thermal mapping (including thermal inertia)–			
	Errors and assumption in thermal remote sensing – Modelling Thermal data - Processing and Analysis: Radiometric Calibration of Satellite	8	3	
	and Airborne Thermal data – TIR Image processing – Emissivity databases–visual and quantitative image interpretation of TIR data– Data fusion			
	 Applications of thermal imagery–UHI and coal mine fire mapping. 			
2.	 Hyperspectral remote sensing Introduction: Imaging spectroscopy—History and development of Hyperspectral remote sensing – working principles of imaging spectrometers – hyperspectral sensors Processing and Analysis: Data preparation and Transformation— Atmospheric correction—End member detection and extraction— spectral unmixing—target and anomaly detection c. Applications of hyperspectral imagery – Mineral and vegetation mapping. 	6	3	
3.	Microwave remote sensing Introduction: Active and passive microwave systems—basic principle of Radar/SAR (Geometric and statistical properties and			

	 imaging geometry) –Radar Relief displacement (Foreshortening, Layover, Shadow &Speckle) Processing and interpretation: Filters–Radar interferometry and polarimetry c.Applications of microwave remote sensing–ocean to pography and flood mapping. 	8	4	
4.	 LIDAR Introduction: Principles and Geometry– sensor and platforms Processing and interpretation: Data processing–Quality control– information extraction. c. Applications of LIDAR – land surface topography and3D mapping. 	5	2	
5.	Unmanned Aerial Vehicle (UAV): Overview of the technology, data visualization, and interpretation.	2	1	
	Total	29	13	0
Exp. No.	Labs			
1.	Land surface emissivity estimation and compare outputs of two estimation techniques			4
2.	Estimate land surface temperature and analyse its spatial variation with respect to different land cover types			4
3.	Pre-processing hyperspectral datasets (Data preparation, Spectral analysis, atmospheric correction)			2
4.	Spectral analysis comparing hyperspectral and multi-spectral datasets			2
5.	Target detection using the hyperspectral data			2
6.	Dimension reduction analysis with hyperspectral data			2
7.	SAR imagery pre-processing			4
8.	Radar Bathymetry			4
9.	Lidar data visualisation, quality checking and basic processing in latosols			4
10.	Surface and terrain model creation using Lidar data			4
	UAV data visualization and basic processing			4
11.				L

Evaluation criteria

Minor test 1: 15 % (Module 1& 2) (learning outcome 1 & 2)
Minor test 2: 15% (Module 3&4) (learning outcome 1 & 2)
Practical: 30% (Module 1:5) (learning outcome 3)
Major test : 40% (Module 1:5) (learning outcome 1 & 2)

Learning outcomes:

Upon completion of this course, a fully engaged student shall be able to:

- 1. Comprehend the basics of thermal, hyperspectral, microwave ,LIDAR and UAV remote sensing.
- 2. Process and interpret thermal, hyper spectral, microwave, LIDAR datasets.
- 3. Utilize skills obtained for different applications of thermal, hyperspectral, microwave, LIDAR remote sensing.

Pedagogical approach: Interdisciplinary learning, discovery learning, peer teaching, practical and case studies.

Materials: Books Module 1:

- Kuenzer, C., & Dech, S. (2013). Thermal Infrared Remote Sensing, ISBN 978-94-007-6639-6.
- Quattrochi, D., & Luvall, J. (2004), Thermal Remote Sensing in Land Surface Processing, CRPPress, ISBN: 978-0-415-30224-1.

Module 2:

- MarcusBorengasser, WilliamS. Hungate, Russell Watkins (2007) Hyperspectral Remote Sensing: Principles and Applications, CRCPress.
- Ruiliang Pu (2017), Hyperspectral Remote Sensing: Fundamentals and Practices, CRCpress.

Module 3:

- H.Woodhouse (2005). An introduction to microwaveremotes ensing. Taylor and Francis, London.
- J.S. Lee, E.Pottier (2008), Polarimetric Radar Imaging: From Basics to Applications, CRCPress
- Oliver and Quegan (1998). Understanding synthetic aperture radar images. ArtechHouse.
- VanZyl,J.,&Kim,Y(2011),SyntheticApertureRadarPolarimetry,JohnWiley&Sons,Inc,
- VanZyl,J.,&Kim,Y(2011),SyntheticApertureRadarPolarimetry,JohnWiley&Sons,Inc,

Module 4:

- Qihao Weng(2011),AdvancesinEnvironmentalRemoteSensing:Sensors,Algorithms,and Applications, CRC Press.
- Qihao, Weng (2012), An Introduction to Contemporary Remote Sensing, McGraw-Hill Professional, ISBN: 978-0-071-74011-1.

Module 5:

GianlucaC, AndrasS, GergelyS(2017), SmallFlyingDrones, Applications for Geographic observation, Springer, ISBN:978-3-319-66576-4

Journals references

- ISPRS Journal of Photogrammetry and Remote Sensing
- Journal of Indian Society of RemoteSensing
- Remote Sensing of Environment

Magazines

- Coordinates
- Geospatial world
- GIM International

Others

Other online materials including case studies will be shared time to time.

Additional information (if any)

Student responsibilities:

The students are expected to read supplementary materials provided along with the course to get holistic knowledge about the subject. Further expected to complete practical exercises and assignments on time.

Course Reviewers:

- 1. Professor Qiao Weng, Director, Center for Urban and Environmental Change; Professor, Department of Earth & Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA.
- 2. Professor Muralikrishna V Iyyanki ,Dr RajaRamanna Distinguished fellow at DRDO, Hyderabad, India.
- 3. Dr. Nusret Demir, Space Sciences and Technologies Division, Akdeniz University, Turkey.