Course title: Applied geoinformatics for water resources								
Course code: WSW 178	No. of credits: 3	LTP: 28-6-22	Learning hours: 56					
Pre-requisite course code and title (if any): WSW 169 (Introduction to Geoinformatics)								
Department: Department of Regional Water Studies								
Course coordinator(s):		Course instruc	Course instructor(s): Prof. Vinay Sinha					
Contact details: sinhav@terisas.ac.in								
Course type: Compulsory C	ore	Course offered	Course offered in: Semester 2					

Course Description

This course introduces the participants to the fundamentals of advanced geospatial technology, namely, Remote sensing and Geographic Information Systems (GIS). It prepares the candidate for geospatial modelling and analysis for water resources. Course objectives

The course provides skills in use of geospatial techniques and related technologies required for solving real-world problems in the context of water resources management. This course provides an overview of cutting-edge remote sensing and GIS techniques that are by and large being used by water professionals. The students will be equipped with unique knowledge and skills necessary for sustainable management of water resources.

This course will be offered to students of M.Tech. (Water Resource Engineering and Management) and pre-Ph.D. Students from other programs willing to pursue doctoral studies in water resources. The students are suggested to read different books, magazines and peer reviewed journals. Course content

	Торіс	L	Т	Р
Modu	Ile 1: Remote Sensing Sensor and its application in water resources			
1	Introduction to Thermal Infrared (TIR) Remote Sensing: History of TIR	2	0	0
	remote sensing, TIR properties and Atmospheric Windows, Thermal			
	Radiation Laws, Thermal properties of terrain, TIR Sensors			
2	Hyperspectral remote sensing: Features and advantages, Hyperspectral	2	2	0
	remote sensing of soil and vegetation, Atmospheric correction			
3	Microwave Remote Sensing: Active and passive microwave remote	2	0	0
	sensing, Active microwave system components, RADAR Environmental			
	Considerations, SAR remote sensing from space, RADAR Inferometry,			
	Passive microwave remote sensing			
Modu	ile 2: Application of Geospatial model in water resources			
4	Introduction to Geospatial model: Flow Chart, Source of Geospatial data	2	0	0
	in Water Resources			
5	Digital elevation model: DEM generation, Contouring, Topography	4	2	0
	based hydrologically corrected DEM, DTM, DSM, TIN and its			
	application in Water Resources			
6	Hydrological Cycle: Factors influencing watershed hydrology, physical	2	2	0
	processes in watershed and basic concepts of hydrological modelling			
Modu	ıle 3: Geospatial models			
7	Terrain indices for Water Resources: Slope, Aspect of Slope, Curvature,	2	0	0
	Viewshed and Hillshade			
8	Basics of Hydrological Analysis: flow direction, flow accumulation,	2	0	0
	drainage network extraction, watershed delineation			
9	Geostatistical tools: Interpolation and pattern analysis	2	0	0
10	Advanced hydrological tools: Hydrodynamic model and Soil and Water	8	0	0
	Assessment tool; Snow melts runoff modelling, Rainfall Run-off			
	modelling, and Groundwater modelling.			
	Practicals			
1	Terrain Analysis	0	0	2
2	Hydrological tool e.g SWAT Model	0	0	8

3	Geostatistical analysis	0	0	2
4	Hydrodynamic model e.g MIKE Flood	0	0	4
4 5	SRM model	0	0	4
		-	-	-
6	GALDIT model	0	0	2
	Total	28	6	22
	ation criteria			
	minor tests: 10% each			
	ractical: 30%			
T o	utorial: 10%			
E	nd-term exam: 40%			
Learı	ning outcomes			
	The student will get equipped to analyse geo-information problems encounter	ed in		
	professional practice and develop appropriate methods for studying and/or sol		e	
	problems, develop and design appropriate methods for geospatial framework of			n
	and processing.			
	The student will be able to generate, integrate, analyse and visualize spatial da	ta with	in the	,
	area of water resources management.			
	The student would be able to formulate and carry out interdisciplinary research	n in geo	ospati	al
	modelling of water resources.	U	•	
Aate	*			
	ested Readings:			
		rce Pe	spect	ive.2 ⁿ
	edition, Pearsons, New Delhi.		-r	
	Lillesand T. M., Kiefer, R.W. and Chipman, J. W. (2008), Remote Sens	sing an	d Ima	age
	Interpretation, 6 th edition, John Wiley & Sons, New Jersey, USA.			-8-
		oraphic		
	Information Systems, 2 nd edition, PHI Learning Private Limited, New Del			
			rd edi	tion.
	Prentice Hall, USA.	<i>j</i> 515, 0	• • • •	,
		ement.	the st	ateof
	the art, Technical report, Colombo, Sri Lanka:	IWMI		URL:
	http://publications.iwmi.org/pdf/H022865.pdf	1	•	erti.
	Engman, E. T. and Gurney, R. J. (1991), Remote sensing in hydrology,	1 st edi	tion	
	Chapman and Hall, London.		,	
		ormwa	ater	
	Systems, Taylor and Francis, London.			
	Lyon, J. G. (2002), GIS for water resources and watershed management.	Lvon J	G (ed) 1 st
	edition, Taylor & Francis, London.	Lyonv	0 (00	,, 1
	• Chen, Y. (2004), GIS and Remote Sensing in Hydrology, Water Resource	es and	Envir	onmer
	IAHS Press, Centre for Ecology and Hydrology, Wallingford, UK.	b und		omner
ourr				
	• Water Resources Management			
	**			
	Hydrological Processes			
	Remote Sensing of the Environment			
	ional information (if any): None			
	nt responsibilities	_		
	es will be interactive. Students are expected to be regular in attendance, par		on, a	nd
uhmi	ssion of assignments. They must come prepared with readings when required			

Course reviewers:

1. Dr. S. P. Aggarwal, FIE, Scientist/Engineer "SG" & Head, Water Resources Department, IndianInstitute of Remote Sensing, ISRO, Dept. of Space, Govt. of India, 4, Kalidas Road,

Dehradun, Uttarakhand - 248001, India.
Prof. R. D. Garg, Professor, Department of Civil Engineering, Indian Institute of TechnologyRoorkee, Roorkee, Uttarakhand - 247667, India.